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ABSTRACT
According to economic theory—supported by empirical and
laboratory evidence—the equilibrium price of a financial se-
curity reflects all of the information regarding the security’s
value. We investigate the computational process on the path
toward equilibrium, where information distributed among
traders is revealed step-by-step over time and incorporated
into the market price. We develop a simplified model of an
information market, along with trading strategies, in order
to formalize the computational properties of the process.
We show that securities whose payoffs cannot be expressed
as weighted threshold functions of distributed input bits are
not guaranteed to converge to the proper equilibrium pre-
dicted by economic theory. On the other hand, securities
whose payoffs are threshold functions are guaranteed to con-
verge, for all prior probability distributions. Moreover, these
threshold securities converge in at most n rounds, where n
is the number of bits of distributed information. We also
prove a lower bound, showing a type of threshold security
that requires at least n/2 rounds to converge in the worst
case.
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1. INTRODUCTION
The strong form of the efficient markets hypothesis states

that market prices nearly instantly incorporate all informa-
tion available to all traders. As a result, market prices en-
code the best forecasts of future outcomes given all infor-
mation, even if that information is distributed across many
sources. Supporting evidence can be found in empirical
studies of options markets [14], political stock markets [7, 8,
22], sports betting markets [3, 9, 27], horse-racing markets
[30], market games [23, 24], and laboratory investigations of
experimental markets [6, 25, 26].

The process of information incorporation is, at its essence,
a distributed computation. Each trader begins with his or
her own information. As trades are made, summary infor-
mation is revealed through market prices. Traders learn or
infer what information others are likely to have by observing
prices, then update their own beliefs based on their obser-
vations. Over time, if the process works as advertised, all
information is revealed, and all traders converge to the same
information state. At this point, the market is in what is
called a rational expectations equilibrium [11, 16, 19]. All
information available to all traders is now reflected in the
going prices, and no further trades are desirable until some
new information becomes available.

While most markets are not designed with information ag-
gregation as a primary motivation—for example, derivatives



markets are intended mainly for risk management and sports
betting markets for entertainment—recently, some markets
have been created solely for the purpose of aggregating in-
formation on a topic of interest. The Iowa Electronic Mar-
ket1 is a prime example, operated by the University of Iowa
Tippie College of Business for the purpose of investigating
how information about political elections distributed among
traders gets reflected in securities prices whose payoffs are
tied to actual election outcomes [7, 8].

In this paper, we investigate the nature of the computa-
tional process whereby distributed information is revealed
and combined over time into the prices in information mar-
kets. To do so, in Section 3, we propose a model of an infor-
mation market that is tractable for theoretical analysis and,
we believe, captures much of the important essence of real
information markets. In Section 4, we present our main the-
oretical results concerning this model. We prove that only
Boolean securities whose payoffs can be expressed as thresh-
old functions of the distributed input bits of information are
guaranteed to converge as predicted by rational expectations
theory. Boolean securities with more complex payoffs may
not converge under some prior distributions. We also pro-
vide upper and lower bounds on the convergence time for
these threshold securities. We show that, for all prior dis-
tributions, the price of a threshold security converges to its
rational expectations equilibrium price in at most n rounds,
where n is the number of bits of distributed information. We
show that this worst-case bound is tight within a factor of
two by illustrating a situation in which a threshold security
requires n/2 rounds to converge.

2. RELATIONSHIP TO RELATED WORK
As mentioned, there is a great deal of documented evi-

dence supporting the notion that markets are able to aggre-
gate information in a number of scenarios using a variety
of market mechanisms. The theoretically ideal mechanism
requires what is called a complete market. A complete mar-
ket contains enough linearly independent securities to span
the entire state space of interest [1, 31]. That is, the dimen-
sionality of the available securities equals the dimensionality
of the event space over which information is to be aggre-
gated.2 In this ideal case, all private information becomes
common knowledge in equilibrium, and thus any function
of the private information can be directly evaluated by any
agent or observer. However, this theoretical ideal is almost
never achievable in practice, because it generally requires a
number of securities exponential in the number of random
variables of interest.

When available securities form an incomplete market [17]
in relation to the desired information space—as is usually
the case—aggregation may be partial. Not all private in-
formation is revealed in equilibrium, and prices may not
convey enough information to recover the complete joint
probability distribution over all events. Still, it is generally
assumed that aggregation does occur along the dimensions
represented in the market; that is, prices do reflect a con-
sistent projection of the entire joint distribution onto the
smaller-dimensional space spanned by securities. In this pa-

1
http://www.biz.uiowa.edu/iem/

2When we refer to independence or dimensionality of secu-
rities, we mean the independence or dimensionality of the
random variables on which the security payoffs are based.

per, we investigate cases in which even this partial aggrega-
tion fails. For example, even though there is enough private
information to determine completely the price of a security
in the market, the equilibrium price may in fact reveal no
information at all! So characterizations of when a rational
expectations equilibrium is fully revealing do not immedi-
ately apply to our problem. We are not asking whether all
possible functions of private information can be evaluated,
but whether a particular target function can be evaluated.
We show that properties of the function itself play a major
role, not just the relative dimensionalities of the information
and security spaces.

Our second main contribution is examining the dynamics
of information aggregation before equilibrium, in particular
proving upper and lower bounds on the time to convergence
in those cases in which aggregation succeeds.

Shoham and Tennenholtz [29] define a rationally com-
putable function as a function of agents’ valuations (types)
that can be computed by a market, assuming agents follow
rational equilibrium strategies. The authors mainly consider
auctions of goods as their basic mechanistic unit and exam-
ine the communication complexity involved in computing
various functions of agents’ valuations of goods. For exam-
ple, they give auction mechanisms that can compute the
maximum, minimum, and kth-highest of the agents’ valua-
tions of a single good using 1, 1, and n − k + 1 bits of com-
munication, respectively. They also examine the potential
tradeoff between communication complexity and revenue.

3. MODEL OF AN INFORMATION MAR-
KET

To investigate the properties and limitations of the pro-
cess whereby an information market converges toward its
rational-expectations equilibrium, we formulate a represen-
tative model of the market. In designing the model, our
goals were two-fold: (1) to make the model rich enough to
be realistic and (2) to make the model simple enough to
admit meaningful analysis. Any modeling decisions must
trade off these two generally conflicting goals, and the de-
cision process is as much an art as a science. Nonetheless,
we believe that our model captures enough of the essence
of real information markets to lend credence to the results
that follow. In this section, we present our modeling as-
sumptions and justifications in detail. Section 3.1 describes
the initial information state of the system, Section 3.2 covers
the market mechanism, and Section 3.3 presents the agents’
strategies.

3.1 Initial information state
There are n agents (traders) in the system, each of whom

is privy to one bit of information, denoted xi. The vec-
tor of all n bits is denoted x = (x1, x2, . . . , xn). In the
initial state, each agent is aware only of her own bit of in-
formation. All agents have a common prior regarding the
joint distribution of bits among agents, but none has any
specific information about the actual value of bits held by
others. Note that this common-prior assumption—typical
in the economics literature—does not imply that all agents
agree. To the contrary, because each agent has different
information, the initial state of the system is in general a
state of disagreement. Nearly any disagreement that could
be modeled by assuming different priors can instead be mod-



eled by assuming a common prior with different information,
and so the common-prior assumption is not as severe as it
may seem.

3.2 Market mechanism
The security being traded by the agents is a financial in-

strument whose payoff is a function f(x) of the agents’ bits.
The form of f (the description of the security) is common
knowledge3 among agents. We sometimes refer to the xi as
the input bits. At some time in the future after trading is
completed, the true value of f(x) is revealed,4 and every
owner of the security is paid an amount f(x) in cash per
unit owned. If an agent ends with a negative quantity of
the security (by selling short), then the agent must pay the
amount f(x) in cash per unit. Note that if someone were
to have complete knowledge of all input bits x, then that
person would know the true value f(x) of the security with
certainty, and so would be willing to buy it at any price
lower than f(x) and (short) sell it at any price higher than
f(x).5

Following Dubey, Geanakoplos, and Shubik [4], and Jack-
son and Peck [13], we model the market-price formation
process as a multiperiod Shapley-Shubik market game [28].
The Shapley-Shubik process operates as follows: The mar-
ket proceeds in synchronous rounds. In each round, each
agent i submits a bid bi and a quantity qi. The semantics
are that agent i is supplying a quantity qi of the security and
an amount bi of money to be traded in the market. For sim-
plicity, we assume that there are no restrictions on credit
or short sales, and so an agent’s trade is not constrained
by her possessions. The market clears in each round by
settling at a single price that balances the trade in that
round: The clearing price is p =

∑

i
bi/
∑

i
qi. At the end

of the round, agent i holds a quantity q′

i proportional to the
money she bid: q′i = bi/p. In addition, she is left with an
amount of money b′i that reflects her net trade at price p:
b′i = bi − p(q′i − qi) = pqi. Note that agent i’s net trade in
the security is a purchase if p < bi/qi and a sale if p > bi/qi.

After each round, the clearing price p is publicly revealed.
Agents then revise their beliefs according to any information
garnered from the new price. The next round proceeds as
the previous. The process continues until an equilibrium is
reached, meaning that prices and bids do not change from
one round to the next.

In this paper, we make a further simplifying restriction
on the trading in each round: We assume that qi = 1 for
each agent i. This modeling assumption serves two analyt-
ical purposes. First, it ensures that there is forced trade in
every round. Classic results in economics show that per-
fectly rational and risk-neutral agents will never trade with
each other for purely speculative reasons (even if they have
differing information) [20]. There are many factors that can
induce rational agents to trade, such as differing degrees of
risk aversion, the presence of other traders who are trading
for liquidity reasons rather than speculative gain, or a mar-
ket maker who is pumping money into the market through a
subsidy. We sidestep this issue by simply assuming that the

3“Common knowledge” is information that all agents know,
that all agents know that all agents know, and so on ad
infinitum [5].
4The values of the input bits themselves may or may not be
publicly revealed.
5Throughout this paper we ignore the time value of money.

informed agents will trade (for unspecified reasons). Sec-
ond, forcing qi = 1 for all i means that the total volume
of trade and the impact of any one trader on the clearing
price are common knowledge; the clearing price p is a simple
function of the agents’ bids, p =

∑

i
bi/n. We will discuss

the implications of alternative market models in Section 5.

3.3 Agent strategies
In order to draw formal conclusions about the price evolu-

tion process, we need to make some assumptions about how
agents behave. Essentially we assume that agents are risk-
neutral, myopic,6 and bid truthfully: Each agent in each
round bids his or her current valuation of the security, which
is that agent’s estimation of the expected payoff of the secu-
rity. Expectations are computed according to each agent’s
probability distribution, which is updated via Bayes’ rule
when new information (revealed via the clearing prices) be-
comes available. We also assume that it is common knowl-
edge that all the agents behave in the specified manner.

Would rational agents actually behave according to this
strategy? It’s hard to say. Certainly, we do not claim that
this is an equilibrium strategy in the game-theoretic sense.
Furthermore, it is clear that we are ignoring some legiti-
mate tactics, e.g., bidding falsely in one round in order to
effect other agents’ judgments in the following rounds (non-
myopic reasoning). However, we believe that the strategy
outlined is a reasonable starting point for analysis. Solving
for a true game-theoretic equilibrium strategy in this setting
seems extremely difficult. Our assumptions seem reason-
able when there are enough agents in the system such that
extremely complex meta-reasoning is not likely to improve
upon simply bidding one’s true expected value. In this case,
according the the Shapley-Shubik mechanism, if the clear-
ing price is below an agent’s expected value that agent will
end up buying (increasing expected profit); otherwise, if the
clearing price is above the agent’s expected value, the agent
will end up selling (also increasing expected profit).

4. COMPUTATIONAL PROPERTIES
In this section, we study the computational power of infor-

mation markets for a very simple class of aggregation func-
tions: Boolean functions of n variables. We characterize the
set of Boolean functions that can be computed in our market
model for all prior distributions and then prove upper and
lower bounds on the worst-case convergence time for these
markets.

The information structure we assume is as follows: There
are n agents, and each agent i has a single bit of private in-
formation xi. We use x to denote the vector (x1, . . . , xn) of
inputs. All the agents also have a common prior probability
distribution P : {0, 1}n → [0, 1] over the values of x. We
define a Boolean aggregate function f(x) : {0, 1}n → {0, 1}
that we would like the market to compute. Note that x, and
hence f(x), is completely determined by the combination of
all the agents’ information, but it is not known to any one
agent. The agents trade in a Boolean security F , which
pays off $1 if f(x) = 1 and $0 if f(x) = 0. So an omniscient

6Risk neutrality implies that each agent’s utility for the se-
curity is linearly related to his or her subjective estimation of
the expected payoff of the security. Myopic behavior means
that agents treat each round as if it were the final round:
They do not reason about how their bids may affect the bids
of other agents in future rounds.



agent with access to all the agents’ bits would know the true
value of security F—either exactly $1 or exactly $0. In re-
ality, risk-neutral agents with limited information will value
F according to their expectation of its payoff, or Ei[f(x)],
where Ei is the expectation operator applied according to
agent i’s probability distribution.

For any function f , trading in F may happen to converge
to the true value of f(x) by coincidence if the prior proba-
bility distribution is sufficiently degenerate. More interest-
ingly, we would like to know for which functions f does the
price of the security F always converge to f(x) for all prior
probability distributions P.7 In Section 4.2, we prove a nec-
essary and sufficient condition that guarantees convergence.
In Section 4.3, we address the natural follow-up question,
by deriving upper and lower bounds on the worst-case num-
ber of rounds of trading required for the value of f(x) to be
revealed.

4.1 Equilibrium price characterization
Our analysis builds on a characterization of the equilib-

rium price of F that follows from a powerful result on com-
mon knowledge of aggregates due to McKelvey and Page [19],
later extended by Nielsen et al. [21].

Information markets aim to aggregate the knowledge of
all the agents. Procedurally, this occurs because the agents
learn from the markets: The price of the security conveys
information to each agent about the knowledge of other
agents. We can model the flow of information through prices
as follows.

Let Ω = {0, 1}n be the set of possible values of x; we say
that Ω denotes the set of possible “states of the world.” The
prior P defines everyone’s initial belief about the likelihood
of each state. As trading proceeds, some possible states can
be logically ruled out, but the relative likelihoods among the
remaining states are fully determined by the prior P. So the
common knowledge after any stage is completely described
by the set of states that an external observer—with no infor-
mation beyond the sequence of prices observed—considers
possible (along with the prior). Similarly, the knowledge of
agent i at any point is also completely described by the set
of states she considers possible. We use the notation Sr to
denote the common-knowledge possibility set after round r,
and Sr

i to denote the set of states that agent i considers
possible after round r.

Initially, the only common knowledge is that the input
vector x is in Ω; in other words, the set of states considered
possible by an external observer before trading has occurred
is the set S0 = Ω. However, each agent i also knows the
value of her bit xi; thus, her knowledge set S0

i is the set
{y ∈ Ω|yi = xi}. Agent i’s first-round bid is her conditional
expectation of the event f(x) = 1 given that x ∈ S0

i . All
the agents’ bids are processed, and the clearing price p1 is
announced. An external observer could predict agent i’s bid
if he knew the value of xi. Thus, if he knew the value of
x, he could predict the value of p1. In other words, the
external observer knows the function price1(x) that relates
the first round price to the true state x. Of course, he does
not know the value of x; however, he can rule out any vector
x that would have resulted in a different clearing price from
the observed price p1.

7We assume that the common prior is consistent with x in
the sense that it assigns a non-zero probability to the actual
value of x.

Thus, the common knowledge after round 1 is the set
S1 = {y ∈ S0| price1(y) = p1}. Agent i knows the com-
mon knowledge and, in addition, knows the value of bit xi.
Hence, after every round r, the knowledge of agent i is given
by Sr

i = {y ∈ Sr|yi = xi}. Note that, because knowledge
can only improve over time, we must always have Sr

i ⊆ Sr−1
i

and Sr ⊆ Sr−1. Thus, only a finite number of changes
in each agent’s knowledge are possible, and so eventually
we must converge to an equilibrium after which no player
learns any further information. We use S∞ to denote the
common knowledge at this point, and S∞

i to denote agent
i’s knowledge at this point. Let p∞ denote the clearing price
at equilibrium.

Informally, McKelvey and Page [19] show that, if n peo-
ple with common priors but different information about the
likelihood of some event A agree about a “suitable” aggre-
gate of their individual conditional probabilities, then their
individual conditional probabilities of event A’s occurring
must be identical. (The precise definition of “suitable” is
described below.) There is a strong connection to rational
expectation equilibria in markets, which was noted in the
original McKelvey-Page paper: The market price of a secu-
rity is common knowledge at the point of equilibrium. Thus,
if the price is a “suitable” aggregate of the conditional ex-
pectations of all the agents, then in equilibrium they must
have identical conditional expectations of the event that the
security will pay off. (Note that their information may still
be different.)

Definition 1. A function g : <n → < is called stochas-

tically monotone if it can be written in the form g(x) =
∑

i
gi(xi), where each function gi : < → < is strictly in-

creasing.

Bergin and Brandenburger [2] proved that this simple defi-
nition of stochastically monotone functions is equivalent to
the original definition in McKelvey-Page [19].

Definition 2. A function g : <n → < is called stochas-

tically regular if it can be written in the form g = h ◦ g′,
where g′ is stochastically monotone and h is invertible on
the range of g′.

We can now state the McKelvey-Page result, as generalized
by Nielsen et al. [21]. In our context, the following simple
theorem statement suffices; more general versions of this
theorem can be found in [19, 21].

Theorem 1. (Nielsen et al. [21]) Suppose that, at equi-
librium, the n agents have a common prior, but possibly dif-
ferent information, about the value of a random variable F ,
as described above. For all i, let p∞

i = E(F |x ∈ S∞

i ). If g
is a stochastically regular function and g(p∞

1 , p∞

2 , . . . , p∞

n ) is
common knowledge, then it must be the case that

p∞

1 = p∞

2 = · · · = p∞

n = E(F |x ∈ S∞) = p∞

In one round of our simplified Shapley-Shubik trading
model, the announced price is the mean of the conditional
expectations of the n agents. The mean is a stochastically
regular function; hence, Theorem 1 shows that, at equilib-
rium, all agents have identical conditional expectations of
the payoff of the security. It follows that the equilibrium



price p∞ must be exactly the conditional expectations of all
agents at equilibrium.

Theorem 1 does not in itself say how the equilibrium is
reached. McKelvey and Page, extending an argument due
to Geanakoplos and Polemarchakis [10], show that repeated
announcement of the aggregate will eventually result in com-
mon knowledge of the aggregate. In our context, this is
achieved by announcing the current price at the end of each
round; this will ultimately converge to a state in which all
agents bid the same price p∞.

However, reaching an equilibrium price is not sufficient for
the purposes of information aggregation. We also want the
price to reveal the actual value of f(x). It is possible that
the equilibrium price p∞ of the security F will not be either
0 or 1, and so we cannot infer the value of f(x) from it.

Example 1: Consider two agents 1 and 2 with private input
bits x1 and x2 respectively. Suppose the prior probability
distribution is uniform, i.e., x = (x1, x2) takes the values
(0, 0), (0, 1), (1, 0), and (1, 1) each with probability 1

4
. Now,

suppose the aggregate function we want to compute is the
XOR function, f(x) = x1 ⊕ x2. To this end, we design a
market to trade in a Boolean security F , which will eventu-
ally payoff $1 iff x1 ⊕ x2 = 1.

If agent 1 observes x1 = 1, she estimates the expected
value of F to be the probability that x2 = 0 (given x1 = 1),
which is 1

2
. If she observes x1 = 0, her expectation of the

value of F is the conditional probability that x2 = 1, which
is also 1

2
. Thus, in either case, agent 1 will bid 0.5 for F

in the first round. Similarly, agent 2 will also always bid
0.5 in the first round. Hence, the first round of trading
ends with a clearing price of 0.5. From this, agent 2 can
infer that agent 1 bid 0.5, but this gives her no information
about the value of x1—it is still equally likely to be 0 or
1. Agent 1 also gains no information from the first round
of trading, and hence neither agent changes her bid in the
following rounds. Thus, the market reaches equilibrium at
this point. As predicted by Theorem 1, both agents have the
same conditional expectation (0.5) at equilibrium. However,
the equilibrium price of the security F does not reveal the
value of f(x1, x2), even though the combination of agents’
information is enough to determine it precisely.

4.2 Characterizing computable aggregates
We now give a necessary and sufficient characterization of

the class of functions f such that, for any prior distribution
on x, the equilibrium price of F will reveal the true value
of f . We show that this is exactly the class of weighted
threshold functions:

Definition 3. A function f : {0, 1}n → {0, 1} is a weigh-

ted threshold function iff there are real constants w1, w2,
. . . , wn such that

f(x) = 1 iff
n
∑

i=1

wixi ≥ 1

Theorem 2. If f is a weighted threshold function, then,
for any prior probability distribution P, the equilibrium price
of F is equal to f(x).

Proof:

Let S∞

i denote the possibility set of agent i at equilibrium.
As before, we use p∞ to denote the final trading price at

this point. Note that, by Theorem 1, p∞ is exactly agent i’s
conditional expectation of the value of f(x), given her final
possibility set S∞

i .
First, observe that if p∞ is 0 or 1, then we must have

f(x) = p∞, regardless of the form of f . For instance, if
p∞ = 1, this means that E(f(y)|y ∈ S∞) = 1. As f(·)
can only take the values 0 or 1, it follows that P (f(y) =
1|y ∈ S∞) = 1. The actual value x is always in the final
possibility set S∞, and, furthermore, it must have non-zero
prior probability, because it actually occurred. Hence, it
follows that f(x) = 1 in this case. An identical argument
shows that if p∞ = 0, f(x) = 0.

Hence, it is enough to show that, if f is a weighted thresh-
old function, then p∞ is either 0 or 1. We prove this by con-
tradiction. Let f(·) be a weighted threshold function corre-
sponding to weights {wi}, and assume that 0 < p∞ < 1. By
Theorem 1, we must have:

P (f(y) = 1|y ∈ S∞) = p∞ (1)

∀i P (f(y) = 1|y ∈ S∞

i ) = p∞ (2)

Recall that S∞

i = {y ∈ S∞|yi = xi}. Thus, Equation (2)
can be written as

∀i P (f(y) = 1|y ∈ S∞, yi = xi) = p∞ (3)

Now define

J+
i = P (yi = 1|y ∈ S∞, f(y) = 1)

J−

i = P (yi = 1|y ∈ S∞, f(y) = 0)

J+ =
n
∑

i=1

wiJ
+
i

J− =
n
∑

i=1

wiJ
−

i

Because by assumption p∞ 6= 0, 1, both J+
i and J−

i are
well-defined (for all i): Neither is conditioned on a zero-
probability event.

Claim: Eqs. 1 and 3 imply that J+
i = J−

i , for all i.
Proof of claim: We consider the two cases xi = 1 and
xi = 0 separately.
Case (i): xi = 1. We can assume that J−

i and J+
i are not

both 0 (or else, the claim is trivially true). In this case, we
have

P (f(y) = 1|y ∈ S∞) · J+
i

P (f(y) = 1|y ∈ S∞) · J+
i + P (f(y) = 0|y ∈ S∞) · J−

i

= P (f(y) = 1|yi = 1,y ∈ S∞) (Bayes’ law)

p∞J+
i

p∞J+
i + (1 − p∞)J−

i

= p∞ (by Eqs. 1 and 3)

J+
i = p∞J+

i + (1 − p∞)J−

i

=⇒ J+
i = J−

i (as p∞ 6= 1)

Case (ii): xi = 0. When xi = 0, observe that the argument
of Case (i) can be used to prove that (1 − J+

i ) = (1 − J−

i ).
It immediately follows that J+

i = J−

i as well. 2

Hence, we must also have J+ = J−. But using linearity
of expectation, we can also write J+ as

J+ = E

([

n
∑

i=1

wiyi

]
∣

∣

∣

∣

∣

y ∈ S∞, f(y) = 1

)

,



and, because f(y) = 1 only when
∑

i
wiyi ≥ 1, this gives us

J+ ≥ 1. Similarly,

J− = E

([

n
∑

i=1

wiyi

]
∣

∣

∣

∣

∣

y ∈ S∞, f(y) = 0

)

,

and thus J− < 1. This implies J− 6= J+, which leads to a
contradiction. 2

Perhaps surprisingly, the converse of Theorem 2 also holds:

Theorem 3. Suppose f : {0, 1}n → {0, 1} cannot be ex-
pressed as a weighted threshold function. Then there exists
a prior distribution P for which the price of the security F
does not converge to the value of f(x).

Proof: We start from a geometric characterization of weight-
ed threshold functions. Consider the Boolean hypercube
{0, 1}n as a set of points in <n. It is well known that f
is expressible as a weighted threshold function iff there is a
hyperplane in <n that separates all the points at which f
has value 0 from all the points at which f has value 1.

Now, consider the sets

H+ = Conv(f−1(1))

and

H− = Conv(f−1(0)),

where Conv(S) denotes the convex hull of S in <n. H+ and
H− are convex sets in <n, and so, if they do not intersect, we
can find a separating hyperlane between them. This means
that, if f is not expressible as a weighted threshold function,
H+ and H− must intersect. In this case, we show how to
construct a prior P for which f(x) is not computed by the
market.

Let x∗ ∈ <n be a point in H+ ∩ H−. Because x∗ is in
H+, there exists some points z1, z2, . . . , zm and constants
λ1, λ2, . . . , λm, such that the following constraints are satis-
fied:

∀k z
k ∈ {0, 1}n, and f(zk) = 1

∀k 0 < λk ≤ 1
m
∑

k=1

λk = 1

m
∑

k=1

λkz
k = x

∗

Similarly, because x∗ ∈ H−, there are points y1,y2, . . . ,yl

and constants µ1, µ2, . . . , µl, such that

∀j y
j ∈ {0, 1}n, and f(yj) = 0

∀j 0 < µj ≤ 1

l
∑

j=1

µj = 1

l
∑

j=1

µjy
j = x

∗

We now define our prior distribution P as follows:

P (zk) =
λk

2
for k = 1, 2, . . . , m

P (yj) =
µj

2
for j = 1, 2, . . . , l,

and all other points are assigned probability 0. It is easy to
see that this is a valid probability distribution. Under this
distribution P, first observe that P (f(x) = 1) = 1

2
. Further,

for any i such that 0 < x∗

i < 1, we have

P (f(x) = 1|xi = 1) =
P (f(x) = 1 ∧ xi = 1)

P (xi = 1)

=

x∗
i

2

x∗

i

=
1

2

and

P (f(x) = 1|xi = 0) =
P (f(x) = 1 ∧ xi = 0)

P (xi = 0)

=

(1−x∗
i
)

2

(1 − x∗

i )

=
1

2

For indices i such that x∗

i is 0 or 1 exactly, i’s private in-
formation reveals no additional information under prior P,
and so here too we have P (f(x) = 1|xi = 0) = P (f(x) =
1|xi = 1) = 1

2
.

Hence, regardless of her private bit xi, each agent i will
bid 0.5 for security F in the first round. The clearing price
of 0.5 also reveals no additional information, and so this is
an equilibrium with price p∞ = 0.5 that does not reveal the
value of f(x). 2

The XOR function is one example of a function that can-
not be expressed as weighted threshold function; Example 1
illustrates Theorem 3 for this function.

4.3 Convergence time bounds
We have shown that the class of Boolean functions com-

putable in our model is the class of weighted threshold func-
tions. The next natural question to ask is: How many
rounds of trading are necessary before the equilibrium is
reached? We analyze this problem using the same simpli-
fied Shapley-Shubik model of market clearing in each round.
We first prove that, in the worst case, at most n rounds are
required.

The idea of the proof is to consider the sequence of com-
mon knowledge sets Ω = S0, S1, . . ., and show that, until
the market reaches equilibrium, each set has a strictly lower
dimension than the previous set.

Definition 4. For a set S ⊆ {0, 1}n, the dimension of
set S is the dimension of the smallest linear subspace of <n

that contains all the points in S; we use the notation dim(S)
to denote it.

Lemma 1. If Sr 6= Sr−1, then dim(Sr) < dim(Sr−1).

Proof: Let k = dim(Sr−1). Consider the bids in round r.
In our model, agent i will bid her current expectation for
the value of F ,

br
i = E(f(y) = 1|y ∈ Sr−1, yi = xi).

Thus, depending on the value of xi, br
i will take on one of

two values h
(0)
i or h

(1)
i . Note that h

(0)
i and h

(1)
i depend only

on the set Sr−1, which is common knowledge before round



r. Setting di = h
(1)
i − h

(0)
i , we can write br

i = h
(0)
i + dixi. It

follows that the clearing price in round r is given by

pr =
1

n

n
∑

i=1

(h
(0)
i + dixi) (4)

All the agents already know all the h
(0)
i and di values, and

they observe the price pr at the end of the rth round. Thus,
they effectively have a linear equation in x1, x2, . . . , xn that
they use to improve their knowledge by ruling out any pos-
sibility that would not have resulted in price pr. In other
words, after r rounds, the common knowledge set Sr is the
intersection of Sr−1 with the hyperplane defined by Equa-
tion (4).

It follows that Sr is contained in the intersection of this
hyperplane with the k-dimension linear space containing
Sr−1. If Sr is not equal to Sr−1, this intersection defines a
linear subspace of dimension (k − 1) that contains Sr, and
hence Sr has dimension at most (k − 1). 2

Theorem 4. Let f be a weighted threshold function, and
let P be an arbitrary prior probability distribution. Then,
after at most n rounds of trading, the price reaches its equi-
librium value p∞ = f(x).

Proof: Consider the sequence of common knowledge sets
S0, S1, . . ., and let r be the minimum index such that Sr =
Sr−1. Then, the rth round of trading does not improve any
agent’s knowledge, and thus we must have S∞ = Sr−1 and
p∞ = pr−1. Observing that dim(S0) = n, and applying
Lemma 1 to the first r − 1 rounds, we must have (r − 1) ≤
n. Thus, the price reaches its equilibrium value within n
rounds. 2

Theorem 4 provides an upper bound of O(n) on the num-
ber of rounds required for convergence. We now show that
this bound is tight to within a factor of 2 by constructing a
threshold function with 2n inputs and a prior distribution
for which it takes n rounds to determine the value of f(x)
in the worst case.

The functions we use are the carry-bit functions. The
function Cn takes 2n inputs; for convenience, we write the
inputs as x1, x2 . . . , xn, y1, y2, . . . , yn or as a pair (x,y). The
function value is the value of the high-order carry bit when
the binary numbers xnxn−1 · · · x1 and ynyn−1 · · · y1 are add-
ed together. In weighted threshold form, this can be written
as

Cn(x,y) = 1 iff

n
∑

i=1

xi + yi

2n+1−i
≥ 1.

For this proof, let us call the agents A1, A2, . . . , An, B1, B2,
. . . , Bn, where Ai holds input bit xi, and Bi holds input bit
yi.

We first illustrate our technique by proving that comput-
ing C2 requires 2 rounds in the worst case. To do this, we
construct a common prior P2 as follows:

• The pair (x1, y1) takes on the values (0, 0), (0, 1), (1, 0),
(1, 1) uniformly (i.e., with probability 1

4
each).

• We extend this to a distribution on (x1, x2, y1, y2) by
specifying the conditional distribution of (x2, y2) given
(x1, y1): If (x1, y1) = (1, 1), then (x2, y2) takes the
values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities 1

2
, 1

6
,

1
6
, 1

6
respectively. Otherwise, (x2, y2) takes the values

(0, 0), (0, 1), (1, 0), (1, 1) with probabilities 1
6
, 1

6
, 1

6
, 1

2
respectively.

Now, suppose x1 turns out to be 1, and consider agent
A1’s bid in the first round. It is given by

b1
A1

= P (C2(x1, x2, y1, y2) = 1|x1 = 1))

= P (y1 = 1|x1 = 1)

· P ((x2, y2) 6= (0, 0)|x1 = 1, y1 = 1)

+P (y1 = 0|x1 = 1)

· P ((x2, y2) = (1, 1)|x1 = 1, y1 = 0)

=
1

2
·
1

2
+

1

2
·
1

2

=
1

2

On the other hand, if x1 turns out to be 0, agent A1’s bid
would be given by

b1
A1

= P (C2(x1, x2, y1, y2) = 1|x1 = 0))

= P ((x2, y2) = (1, 1)|x1 = 0)

=
1

2

Thus, irrespective of her bit, A1 will bid 0.5 in the first
round. Note that the function and distribution are symmet-
ric between x and y, and so the same argument shows that
B1 will also bid 0.5 in the first round. Thus, the price p1

announced at the end of the first round reveals no informa-
tion about x1 or y1. The reason this occurs is that, under
this distribution, the second carry bit C2 is statistically in-
dependent of the first carry bit (x1 ∧ y1); we will use this
trick again in the general construction.

Now, suppose that (x2, y2) is either (0, 1) or (1, 0). Then,
even if x2 and y2 are completely revealed by the first-round
price, the value of C2(x1, x2, y1, y2) is not revealed: It will
be 1 if x1 = y1 = 1 and 0 otherwise. Thus, we have shown
that at least 2 rounds of trading will be required to reveal
the function value in this case.

We now extend this construction to show by induction
that the function Cn takes n rounds to reach an equilibrium
in the worst case.

Theorem 5. There is a function Cn with 2n inputs and a
prior distribution Pn such that, in the worst case, the market
takes n rounds to reveal the value of Cn(·).

Proof: We prove the theorem by induction on n. The base
case for n = 2 has already been shown to be true. Start-
ing from the distribution P2 described above, we construct
the distributions P3,P4, . . . ,Pn by inductively applying the
following rule:

• Let x−n denote the vector (x1, x2, . . . , xn−1), and de-
fine y−n similarly. We extend the distribution Pn−1

on (x−n,y−n) to a distribution Pn on (x,y) by spec-
ifying the conditional distribution of (xn, yn) given
(x−n,y−n): If Cn−1(x

−n,y−n) = 1, then (xn, yn) takes
the values (0, 0), (0, 1), (1, 0), (1, 1) with probabili-
ties 1

2
, 1

6
, 1

6
, 1

6
respectively. Otherwise, (xn, yn) takes

the values (0, 0), (0, 1), (1, 0), (1, 1) with probabilities
1
6
, 1

6
, 1

6
, 1

2
respectively.

Claim: Under distribution Pn, for all i < n,

P (Cn(x,y) = 1|xi = 1) = P (Cn(x,y) = 1|xi = 0).



Proof of claim: A similar calculation to that used for C2

above shows that the value of Cn(x,y) under this distri-
bution is statistically independent of Cn−1(x

−n, y−n). For
i < n, xi can affect the value of Cn only through Cn−1. Also,
by contruction of Pn, given the value of Cn−1, the distribu-
tion of Cn is independent of xi. It follows that Cn(x,y) is
statistically independent of xi as well. Of course, a similar
result holds for yi by symmetry.

Thus, in the first round, for all i = 1, 2, . . . , n − 1, the
bids of agents Ai and Bi do not reveal anything about their
private information. Thus, the first-round price does not
reveal any information about the value of (x−n, y−n).

On the other hand, agents An and Bn do have different
expectations of Cn(x) depending on whether their input bit
is a 0 or a 1; thus, the first-round price does reveal whether
neither, one, or both of xn and yn are 1. Now, consider
a situation in which (xn, yn) takes on the value (1, 0) or
(0, 1). We show that, in this case, after one round we are
left with the residual problem of computing the value of
Cn−1(x

−n,y−n) under the prior Pn−1.
Clearly, when xn + yn = 1, Cn(x,y) = Cn−1(x

−n,y−n).
Further, according to the construction of Pn, the event (xn+
yn = 1) has the same probability (1/3) for all values of
(x−n,y−n). Thus, conditioning on this fact does not alter
the probability distribution over (x−n,y−n); it must still be
Pn−1.

Finally, the inductive assumption tells us that solving this
residual problem will take at least n− 1 more rounds in the
worst case and hence that finding the value of Cn(x,y) takes
at least n rounds in the worst case. 2

5. DISCUSSION
Our results have been derived in a simplified model of an

information market. In this section, we discuss the applica-
bility of these results to more general trading models.

Assuming that agents bid truthfully, Theorem 2 holds in
any model in which the price is a known stochastically mono-
tone aggregate of agents’ bids. While it seems reasonable
that the market price satisfies monotonicity properties, the
exact form of the aggregate function may not be known if
the volume of each user’s trades is not observable; this de-
pends on the details of the market process. Theorem 3 and
Theorem 5 hold more generally; they only require that an
agent’s strategy depends only on her conditional expecta-
tion of the security’s value. Perhaps the most fragile re-
sult is Theorem 4, which relies on the linear form of the
Shapley-Shubik clearing price (in addition to the conditions
for Theorem 2); however, it seems plausible that a similar
dimension-based bound will hold for other families of non-
linear clearing prices.

Up to this point, we have described the model with the
same number of agents as bits of information. However, all
the results hold even if there is competition in the form of a
known number of agents who know each bit of information.
Indeed, modeling such competition may help alleviate the
strategic problems in our current model.

Another interesting approach to addressing the strategic
issue is to consider alternative markets that are at least
myopically incentive compatible. One example is a mar-
ket mechanism called a market scoring rule, suggested by
Hanson [12]. These markets have the property that a risk-
neutral agent’s best myopic strategy is to truthfully bid her
current expected value of the security. Additionally, the

number of securities involved in each trade is fixed and pub-
licly known. If the market structure is such that, for ex-
ample, the current scoring rule is posted publicly after each
agent’s trade, then in equilibrium there is common knowl-
edge of all agents’ expectation, and hence Theorem 2 holds.
Theorem 3 also applies in this case, and hence we have the
same characterization for the set of computable Boolean
functions. This suggests that the problem of eliciting truth-
ful responses may be orthogonal to the problem of com-
puting the desired aggregate, reminiscent of the revelation
principle [18].

In this paper, we have restricted our attention to the
simplest possible aggregation problem: computing Boolean
functions of Boolean inputs. The proofs of Theorems 3 and 5
also hold if we consider Boolean functions of real inputs,
where each agent’s private information is a real number.
Further, Theorem 2 also holds provided the market reaches
equilibrium. With real inputs and arbitrary prior distribu-
tions, however, it is not clear that the market will reach an
equilibrium in a finite number of steps.

6. CONCLUSION

6.1 Summary
We have framed the process of information aggregation in

markets as a computation on distributed information. We
have developed a simplified model of an information mar-
ket that we believe captures many of the important aspects
of real agent interaction in an information market. Within
this model, we prove several results characterizing precisely
what the market can compute and how quickly. Specifically,
we show that the market is guaranteed to converge to the
true rational expectations equilibrium if and only if the se-
curity payoff function is a weighted threshold function. We
prove that the process whereby agents reveal their infor-
mation over time and learn from the resulting announced
prices takes at most n rounds to converge to the correct
full-information price in the worst case. We show that this
bound is tight within a factor of two.

6.2 Future work
We view this paper as a first step towards understanding

the computational power of information markets. Some in-
teresting and important next steps include gaining a better
understanding of the following:

• The effect of price accuracy and precision: We have as-
sumed that the clearing price is known with unlimited
precision; in practice, this will not be true. Further,
we have neglected influences on the market price other
than from rational traders; the market price may also
be influenced by other factors such as misinformed or
irrational traders. It is interesting to ask what aggre-
gates can be computed even in the presence of noisy
prices.

• Incremental updates: If the agents have computed the
value of the function and a small number of input bits
are switched, can the new value of the function be
computed incrementally and quickly?

• Distributed computation: In our model, distributed in-
formation is aggregated through a centralized market



computation. In a sense, some of the computation it-
self is distributed among the participating agents, but
can the market computation also be distributed? For
example, can we find a good distributed-computational
model of a decentralized market?

• Agents’ computation: We have not accounted for the
complexity of the computations that agents must do
to accurately update their beliefs after each round.

• Strategic market models: For reasons of simplicity and
tractability, we have directly assumed that agents bid
truthfully. A more satisfying approach would be to as-
sume only rationality and solve for the resulting game-
theoretic solution strategy, either in our current com-
putational model or another model of an information
market.

• The common-prior assumption: Can we say anything
about the market behavior when agents’ priors are
only approximately the same or when they differ great-
ly?

• Average-case analysis: Our negative results (Theorems
3 and 5) examine worst-case scenarios, and thus in-
volve very specific prior probability distributions. It is
interesting to ask whether we would get very different
results for generic prior distributions.

• Information market design: Non-threshold functions
can be implemented by layering two or more thresh-
old functions together. What is the minimum number
of threshold securities required to implement a given
function? This is exactly the problem of minimizing
the size of a neural network, a well-studied problem
known to be NP-hard [15]. What configuration of se-
curities can best approximate a given function? Are
there ways to define and configure securities to speed
up convergence to equilibrium? What is the relation-
ship between machine learning (e.g., neural-network
learning) and information-market design?
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