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The authors begin by modelling the World Wide Web as an
ecosystem, a fractal, which reflects an intimate coupling of people,
programs, and pages. Viewing the Web from a variety of scales and
viewpoints, from macrocosmic to microcosmic, it is evident that
users, authors, and search engines all influence one another to yield
an amazing array of self-organizing, self-regulation, and self-
similarity. Ultimately, the Web’s organization is intimately related to
the complexity of human culture and to the human mind, and it is
this subtle relationship between humanity and the Web that is
responsible for the Web’s amazing properties.
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A Birds Eye View of People,
Programs, and Pages
Before we dissect the Web in terms of scale, it is
valuable to stand back and take a look at the Web’s
evolution in the broader context of human behav-
iour. Doing so will allow us to better understand and
appreciate how the different scaling properties of the
Web relate to one another and what external forces
drive the dynamics of the Web. For this discussion,
we will focus our attention on how users (people),
search engines (programs), and Web sites (pages)
impact one another.

At any moment in time, one can (in theory)
measure the number of users that view a page over
some period, the likelihood that a page will be the
result of a typical query sent to a search engine, and
the number of links that point to a particular page
from other Web pages. Let’s refer to these three prop-
erties more simply as the ‘traffic,’ ‘rank,’ and
‘connectedness’ of a page, respectively. Notice that
each attribute superficially appears to be determined
by only one type of thing: users determine traffic,
search engines determine rank, and pages (and by
implication authors) determine connectedness.
However, in reality, all three properties are deeply
intertwined; but it was not always this way.

In the beginning of the Web, there were no search
engines, only links. As a result, users could visit a
Web page only by directly typing in a URL (the part
at the top of your browser that typically begins with
‘http://’), or by clicking on a link. Relative to each
other, a click is far easier for a user to do than it is to
type in a URL. This leads us to the first observation
on the relationship between traffic and connected-
ness:

The greater a page’s connectedness, the greater its
traffic. 

After all, if users predominately arrive at pages via
a link, then (all things being equal) the more pages
that link to a certain page, the more clicks from 

different locations that it can generate.
Different stages of the Web also saw vastly differ-

ent demographics between Web page users and Web
page authors. Given the Web’s academic origin, most
early authors were scientists, as were most users. But
as excitement for the Web spread, and being that it is
far easier to be a user than an author, there was a
brief period in time in which users and authors were
very different groups of people.

Over time, as Web-authoring tools became readily
available and as Web resources became easier to
attain, these two demographics gradually merged.
Thus, in the current state of the world, many Web
users are also Web authors. We will explore this fact
more closely later when we discuss the phenomenon
of Web loggers. However, for now, just consider the
fact that when authors and users come from similar
pools of people, a new relationship emerges:

The greater a page’s traffic, the greater its connected-
ness.

This happens simply because people tend to link
to pages that they themselves value.

Still in the dark ages of the Web, there suddenly
emerged a new tool: the search engine. Now ubiqui-
tous, the first general purpose search engine,
AltaVista, represented a revolution in usability on
the Web. Suddenly, pages could be found by content
and not just by location. Instead of knowing where
some piece of information was located on the Web,
one could find it by supplying a rough sketch (say a
few keywords) to describe the desired document.
While there are many benefits to retrieving informa-
tion in this reversed manner, there is an unfortunate
side affect: a single query can have thousands or even
millions of valid results. Worse yet, some results,
while technically a valid match to a query, may
actually be off topic to the intent of a user’s query. For
these cases, the ‘right’ result may be buried deep
within a pile of ‘wrong’ results.

Search engines – back then and still today – try to
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The Web as an Ecosystem

The World Wide Web is a digital entity like
no other. Over the course of roughly fifteen
years – and at an exponentially increasing

rate – the Web has managed to capture, collect,
organize, and connect a stunning amount of
humankind’s collective knowledge. It now reflects
almost every aspect of our collective culture: from
the peace prize to pornography; from academia to 
e-commerce; and from the mega-corporation to the
personal home page. Though the Web is certainly a
unique object in the history of the world, at its heart
the Web is a social creation, and so perhaps it is not
surprising that many of the Web’s properties mimic
those of nearly every other social and biological
entity. The Web is in a very real sense an ecosystem,
and as such can be viewed from a number of differ-
ent perspectives spanning the microscopic to the
macroscopic, with each vantage point showing an
astonishing amount of complexity.

Natural ecosystems derive much of their com-
plexity from a vast number of interdependencies:
predators consume prey; individuals compete for
the opportunity to reproduce; symbiotes cooperate
with other species for improved viability; and the
expired biomass from all organisms ultimately fuels
the microbes at the lowest level of the food chain.
In this way, an ecosystem is endlessly circular, with
chains of dependencies streaming between individ-
uals and species.

We say that an ecosystem’s state is recursive
because of the circularity of the ecosystem’s
dependencies. The future of every creature is inti-
mately coupled to the present state of every other
member of the ecosystem. As a result, the life cycle
of a single individual as well as the evolution of an
entire ecosystem are both tremendously complex
precisely because each is a function of the other. 

The circular dependencies of the Web are rich as
well. Web authors attempt to build pages that a
target audience of users will value, and the authors
add value by supplying a mixture of content and
hyperlinks (or more simply, links) to other valuable
pages. Hence, one instance of recursion on the Web
is that valuable pages tend to accumulate incoming
links, and pages can become more valuable by
linking to other valuable pages. The subtlety of the
Web’s recursion partially hinges on the circular
influences that authors and users have on one
another, each taking actions that are influenced by
the other. To complete the analogy between the
Web and natural ecosystems: the behaviours of
individual authors or users as well as the evolution
of the entire Web are tremendously complex pre-
cisely because each is a function of the other.

Throughout this chapter, we will use the
analogy between natural ecosystems and the Web
to better explore the Web’s fractal properties and
from whence they come. We will focus on three
different vantage points: the microscopic level of
the individual author or user (single organism), the
intermediate level of the Web community (the
niche or species), and the macroscopic level of the
entire Web (the entire ecosystem or biosphere).
But first, we will step back from the Web com-
pletely to examine its origin and evolution.
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Fig. 6. 1 previous page: A map of part of the Internet's
topology, updated March 2004, illustrating the
macroscopic structure of the Web and the apparent
fractal nature of link connectivity. Points correspond to
distinct Internet addresses of computers on the Internet;
lines correspond to the connections between computers.

Data and visualization courtesy Bill Cheswick and Hal Burch of Lumeta
Corporation. Lumeta is a pioneer in analyzing and securing corporate
networks, http://www.lumeta.com. Reprinted by permission.
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as an ingredient to their ranking function, but at the
time of their introduction, DirectHit and Google
each represented another major step in search engine
technology by using the collective wisdom of the
Web to better satisfy users. However, these two inno-
vations closed the loop, so to speak, on how people,
programs, and pages influence one another:

The greater a page’s traffic, the greater its rank.
The greater a page’s connectedness, the greater its

rank.
With these final two relationships, people,

programs, and pages each have the ability to influ-
ence one another. We have seen throughout this
book how circular relationships (i.e. positive
feedback loops) are key to the creation of fractals and
chaos, and so it is on the Web. Besides the benefits
seen from an evolving Web, we can also see instances
of spontaneous weirdness that are all a direct conse-
quence of the Web’s recursion:

A single link from an influential Web site can
cause the linked Web site to collapse, due to a spon-
taneous increase in traffic. For example, the Web site
Slashdot, http://slashdot.org/, is a daily compendium
of links to interesting developments in technology,
submitted by a vast and sometimes fanatical user
base, and vetted by editors. When Slashdot adds a
new link to an interesting Web page, the ensuing
stampede of readers clicking on the link can bring an
unprepared Web site to its knees under the weight of
all its new audience. This phenomenon has been
called the Slashdot effect (even if the originating site

is not Slashdot itself), and
affected sites are said to
be slashdotted. 

ease the burden on the user by ordering search results
so that the high quality pages that are likely to satisfy
a user’s intent show up first. But the process of
ranking results is both art and science and still far
from perfect. In any event, with the emergence of
search engines came a new relationship:

The greater a page’s rank, the greater its traffic.
This new relationship holds simply because a

search engine can introduce users to pages that they
never knew about. Moreover, in the case where the
user is an author as well, we also find the corollary:

The greater a page’s rank, the greater its connected-
ness.

Hence, the programs behind the search engines
have an impact on the traffic patterns of users and
the linking patterns of pages (as search engines influ-
ence authors).

Over time, new search engines would come and
go, offering different features with the goal of earning
a dedicated user base. But the sticky feature – a
feature that entices users to be repeat users – is a
better ranking function, one that seems to anticipate
the user intentions, and satisfies the user needs with
relevant results better than the competition.

Two interesting breakthroughs in the search
engine industry used an implicit form of intelligence
embedded within the Web: traffic and connected-
ness. In the aggregate, traffic patterns on the Web
reflect what users find valuable, while patterns in
connectedness reflect what authors find valuable.
Both represent something akin to a voting scheme
for ordering pages by value. In the late 1990s each of
these ideas were exploited by two new search
engines, DirectHit and Google, which were able to
use traffic and connectedness (respec-
tively) to more effectively rank
pages.

Today, virtually every
major search engine uses
traffic and connectedness
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We have seen throughout this book how circular

relationships (i.e. positive feedback loops) are key to the

creation of fractals and chaos, and so it is on the Web.
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data travelling around the Internet are quite small, a
few pieces of data are many many times larger than
average. The occasional video file or dissertation-
length email punctuates a steadier stream of
comparatively miniscule Web pages, emails, etc. This
skewed distribution in the sizes of pieces of data is
called a power law distribution or a heavy-tailed distri-
bution, for reasons we will explain shortly. It turns

Fig. 6. 2 above: A second visualization of part of the
Internet's topology, generated after a day of probing the
Internet from a single source.The topological structure is
rendered inside a sphere using hyperbolic geometry,
which yields a fisheye-like display.

Data and visualization are courtesy scientists at the Cooperative
Association for Internet Data Analysis (CAIDA), one of the leading academic
centers for measuring, understanding, and supporting the Internet
infrastructure, http://www.caida.org. Copyright © 2003 The Regents of the
University of California. All Rights Reserved. Reprinted by permission.

Communities of Web loggers have colluded to
form google bombs. By collectively linking to a page
in an atypical manner, small groups of individuals
have successfully tricked search engines into produc-
ing humorous results. For example, a search on ‘more
evil than evil itself ’used to return Microsoft’s Web
site as the top-ranked result. This was accomplished
by a loosely coordinated group of Web authors
creating links to Microsoft, where the underlined
text in the link (the so-called anchor text) said ‘more
evil than evil itself ’. A similar phenomenon is
known as link spam where individuals attempt to
influence search engines to favor pages of their
choosing.

All of these cases are a consequence of the Web
reflecting an intricate coupling between people,
programs, and pages. Throughout the rest of the
chapter we will see how the Web’s recursion yields a
surprising degree of self-organization, self-regulation,
and self-similarity on multiple levels.

The Macroscopic Web

Assigning superlatives to the Web is easy: it’s
massive, it’s dynamic, it’s decentralized – it’s unlike
anything else in the world. But one of the Web’s
most amazing attributes is that it is arguably the
largest self-organized artifact in existence. Every day
millions of Web publishers add, delete, move, and
change their pages and links, yet what results is far
from random or haphazard. Rather, from these
millions of uncoordinated decisions emerge a star-
tling number of regularities. Figures 6.1 and 6.2
display two visualizations of the Internet’s map, its
complex flowering and branching structures tantaliz-
ingly fractal-like. Scientists have quantified that
intuition, uncovering self-organizing fractal patterns
in examining nearly every aspect of the Web, includ-
ing the contents of pages, the hyperlinks between
pages [Barabási 1999], the physical wires making up

the Internet [Faloutsos 1999], the types of files found
on the Web [Crovella 1998], the traffic patterns on
the Internet [Leland 1993] [Crovella 1996], and the
behavior of people as they surf the Web [Huberman
1998]. 

Consider traffic patterns. If you were to tap a part-
icular wire on the Internet and listen as emails, Web
page contents, and other data zipped back and forth,
you would observe erratic rises and falls in the
volume of traffic, marked with occasional bursts.
Figure 6.3a shows a representative sample of traffic
volume over the course of 100,000 seconds, or a little
more than a day: you can see somewhat noisy fluctu-
ations punctuated with large bursts. Figure 6.3b
zooms in on a particular 10,000-second sub-period
(about three hours) within the full series. The
pattern of fluctuations and bursts looks roughly the
same. Similarly, in Figures 6.3c through 6.3e, as we
zoom in to shorter and shorter time scales, the same
degree of fluctuations and bursts seems evident. The
distribution of traffic is neither smoothing out nor
getting choppier as we zoom in further and further.
Here we have the classic appearance of self-similarity.
We observe the same statistical behavior regardless
of the resolution (time scale) of our plot. Scientific
studies confirm mathematically what our eye
suspects: statistical measurements of the variability
of traffic on the Internet and on corporate networks
do not differ substantially whether we are examining
patterns across a month, a day, an hour, or a few
seconds [Leland 1993] [Crovella 1996].

Why is Internet traffic self-similar? The answer is
surprisingly simple. A particular wire on the Internet
will carry a variety of data traffic, including email,
Web pages, images, music, videos, and network
control information. Each piece of data requires a dif-
ferent amount of information to encode: a single
email usually requires little information, while a
video clip of a movie trailer requires much more
information. While the vast majority of pieces of
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distribution when plotted, or the part describing
large values of x) actually contains a much larger pro-
portion of items than would be predicted by the
standard bell-shaped distribution (a.k.a. the Normal
or Gaussian distribution) often used in statistics. 

That is, as we move to the far right of a bell-
shaped distribution – well past the center of the bell
– the frequency of items approaches zero extremely
quickly, much more quickly than in a power law 
distribution.

The power law is a fundamental indicator of
fractal-ness [Schroeder 1995]. A power law is such
that, no matter how much we zoom in or out, it looks
the same. It doesn’t matter if we draw a plot of the
distribution over a huge range of sizes, say ranging

from 1 to 100,000, or over a smaller range of sizes, say
between 10 and 100, the shape of the distribution
will be the same. Figure 6.4 illustrates the self-similar
nature of the power law.

Power Laws and the Log-Log Plot

The best way to understand the power law is by
example. In Figure 6.5, we show a series of plots, all
displaying the same information in different ways.
All of the plots convey information about the
number of inbound links to each of 100,000
randomly chosen Web pages. Each point on the
graph can be read as follows: the point’s x-value is a
particular number of inbound links, while the point’s
y-value is the number of Web pages (among the

out that, when the sizes of pieces of data in a stream
of traffic are governed by a power law, that stream
will be self-similar. That’s all it takes for self-similar-
ity to arise. The consistency of the series of plots in
Figures 6.3a through 6.3e is a direct result of the fact
that data traversing across the Internet is mainly a
river of small and moderate bits of data littered inter-
mittently with relatively monstrous chunks.

In more detail, a power law states that, within a
set of items, items of size x are a constant factor (say,
two times) more frequent than items of size 2*x. In

turn, items of size 2*x are twice as frequent as items
of size 4*x. Mathematically, the frequency of an item
of size x is proportional to x-β, where β is a constant.
For example, suppose β=1. Then the frequency of an
item of size 2 is 2-1 or 1/2, while the frequency of an
item of size 4 is 4-1 or 1/4. The larger the item, the less
frequently it occurs, in direct proportion to its size.
The distribution is called a power law because of the
constant power β used in the formula for frequency. 

The distribution is said to be heavy-tailed because
the tail of the distribution (the right-hand side of the

Fig. 6.3 below: Self-similarity of Internet traffic.
Fluctuations and bursts in traffic over a period of (a)
100,000 seconds, or about one day (b) 10,000 seconds,
or about three hours, (c) 1,000 seconds, (d) 100
seconds, and (e) 10 seconds. Each plot is a zoomed-in
image of the previous.The degree of fluctuations and
bursts appears similar at every level.

Figure courtesy Will E. Leland et al.,‘On the Self-Similar Nature of
Ethernet Traffic,’ACM SIGComm’93, p. 186, Copyright © 1993 ACM, Inc.
Reprinted by permission.

(a) Traffic across 100,000 seconds

(b) 10,000 seconds (c) 1000 seconds

(d) 100 seconds (e) 10 seconds

Visualizing the Net
Creating a visual depiction of the Internet is no
easy task.The difficulty is not only a matter of the
Internet’s size. Because the Internet is composed
of independent computers distributed around
the globe, no one person can hope to compile a
specification of all the computers and
connections involved.Visualization is also
hampered by the fact that the overlapping
connections in the Internet–and similarly the
hyperlinks among Web pages–are impossible to
flatten into two-dimensional or three-
dimensional images suitable for human
consumption.

Scientists have long examined the problem of
visualizing high-dimensional data in two or three
dimensions.Throughout this chapter, we report
summary characterizations of statistical measures
of the Internet that we can show using traditional
two-dimensional plots. Figures 6.1 and 6.2
represent more direct attempts at capturing the
structure of the Internet in images, using a variety
of visualization techniques.The layout algorithm
used for Figure 1a can take almost a day of
computing time to optimize visual space.The
method used for Figure 6.1b was developed by
Young Hyun, and was based on the pioneering
visualization techniques of Tamara Munzer. By
plotting points within a three-dimensional
sphere, the image is more comprehensible for
viewers and allows a natural interactive mode

where different points can be ‘dragged‘ into the
center of the sphere for closer inspection of that
point and its neighborhood
.(http://www.caida.org/tools/visualization/walrus/)

A number of other scientific efforts have focused
on depicting the intricacies of the Internet using
visual means. Many are cataloged in The Atlas of
Cyberspace [Dodge 2002].
(http://www.cybergeography.org/atlas/) Ben Fry
of the MIT Media Lab has created a real-time
animation of Web traffic, growing and squirming
like an anemone in immediate response to
browsing behaviour across an MIT web site
(http://acg.media.mit.edu/people/fry/anemone/).
Beyond mapping, several teams have explored
methods for presenting Web search results
graphically, though none has yet supplanted
today’s standard text-based lists.

To many people, the inner workings of the
Internet are a mystery: how do computers
everywhere interact so that email and Web
contents zip to and from the right places at the
right times? An informative and entertaining
computer-animated movie called The Warriors of
the Net (http://www.warriorsofthe.net/) explains
the Internet’s mechanics by portraying its
components (bits, wires, packets, routers, firewalls,
etc.) as robotic creatures in a stark factory of the
future.
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log-log plot. Notice that, once the data is drawn on a
log-log plot, a striking regularity emerges that would
be impossible to see using the linear scales of Figure
6.5a: the points follow an almost perfectly straight
line. When a distribution drawn on a log-log plot
follows a straight line, it is a power law distribution. 

Power laws arise naturally. The amount of wealth
spread among people follows a power law. The
number of people spread across cities follows a power
law. The number of connections in the metabolic
network of a microorganism, the number of citations
to academic papers, the number of connections in
the electricity power grid, and the number of people
seeing a particular movie are but a few of thousands
of examples of naturally-occurring power laws.

Power laws also abound on the Web. As men-
tioned, the sizes of data pieces as they flow across the
Internet are distributed according to a power law.

The sizes of files themselves, residing on Web servers
on the Internet, obey a power law. The number of
queries submitted to search engines, the frequency of
word usage on pages around the Web, the number of
hyperlinks pointing to and from Web pages, the
depth to which Web users surf, and the number of
physical wires connecting to Internet hubs all follow
power laws.

Let’s examine more closely the pattern and forma-
tion of links on the Web. Figure 6.6a shows the
distribution of inbound links on the Web plotted on
a log-log plot. Notice that on a log-log plot a power
law distribution appears as a straight line. We see
that the distribution of inbound links on the Web is
close to a pure power law, except for a very slight
drop-off from a straight line at the top left of Figure
6.6a (the region of small values of x, or small
numbers of inbound links).
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Fig. 6. 6 right: A tour of
the power-law Web.
Distributions capturing
nearly all aspects of the
Web follow a power
law, including (a)
inbound links, (b)
outbound links, (c) files
sizes, and (d) the
physical Internet itself
(the wires connecting
computers around the
world). Power laws
crop up elsewhere too,
including people’s
behaviour as they surf
the Web, and even the
level of interest among
advertisers to be
showcased in
conjunction with
particular search
queries.

a) inbound Web links (b) outbound Web links

(c) Web file sizes (d) physical Internet topology

100,000) that have the specified number of inbound
links pointing to them. This type of plot, which
displays the number of items that appear within spec-
ified ranges on the x-axis, is called a distribution or a
histogram. Figure 6.5a shows the distribution with
ordinary linear scales on each axis. The plot is an
almost perfect L shape, revealing the extremely
skewed distribution of links on the Web. Almost all
Web pages have a very small number of inbound
links, as seen by the points lying on the vertical
portion of the L shape. On the other hand, a tiny
handful of Web pages have a hugely disproportionate
number of inbound links, as seen by the few points on
the far right of the horizontal piece of the L.

Figure 6.5a is hard to read, since all the points are
squashed onto the vertical and horizontal pieces of
the L. Figure 6.5b displays exactly the same informa-
tion: the only difference is that the x-axis is plotted
on a log scale, where the distance between the x-
values of one and ten is given as much visual space
as the distance between ten and one hundred and
the distance between one hundred and one
thousand. The log scale stretches out the data points,
making it easier to see the detail of the distribution.

Figure 6.5c plots the same information using log
scales on both the x and y axes. This is the so-called
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Fig. 6. 5: Different ways to visualize a power law distribution. All three graphs display the same data: a histogram of the
number of Web pages (among a random subset of 100,000 pages) that have a specific number of inbound links
pointing to them. (a) Shown with both axes on a linear scale; (b) The horizontal axis with a logarithimic scale; (c) both
axes on a logarithmic scale.

(a)

(b)

Fig. 6.4 above: Self-similarity of the power law distribution.
Both plots show the same power law distribution with
parameter b=1, so that frequency equals x-1.The top
graph displays a large region from 1 to 100,000; the
bottom graph displays a smaller region from 10 to 100. No
matter what region is plotted at what resolution, the
distribution will always appear as straight line (of the
same slope) on a log-log plot.
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wedding sites, one factor could be their local nature:
many wedding-related retailers serve only a local
area, and those serving different areas usually do not
compete. Another factor may be that people looking
for wedding services use methods other than the Web
more often (e.g., referrals from friends). Perhaps
because people use wedding providers rarely, they are
less likely to create and share information among
related sites on the Web.

Note that more difficulty competing with existing
popular sites does not mean that substantially better
newcomers cannot become popular quickly. For
example, Google (a relative latecomer to the search
business) has captured a huge fraction of the Web
search business largely by providing better service
and spreading through word of mouth.

The Web is a Bow Tie

In 2000, a collaboration of scientists from AltaVista,
IBM, and Compaq [Broder 2000] discovered a fasci-
nating property of the Web: somehow, all of the
billions of pages and links have organized themselves
into an overall bow tie shape as pictured in Figure 6.8.
The center of the bow tie is a core of strongly con-
nected pages: every one of these pages can be reached
from any other page within the core by clicking on a
sequence of links (the sequence may need to traverse
a number of intermediate pages, but some path exists
between the two core pages). The left bow is con-
nected to the core, but only through outgoing links.
That is, there exist links from the left bow to the core,
but not vice versa. Conversely, the right bow is con-
nected from the core only via inbound links. One can
traverse links from the core to the right bow, but not
back again. Finally, disconnected pages that have no
links either to or from the core surround the bow tie.
The scientists measured the relative sizes of these
four main components of the Web (the core, the left
bow, the right bow, and the disconnected pages). To
their surprise, all four components were roughly the

same size.
A year later, some of the same scientists [Dill

2001] showed that the bow tie property is a feature
not only of the Web in its entirety, but also of various
pieces of the Web. No matter how the Web is sliced
– whether by content into topic-specific clusters, by
geographic location into regions, or by organizational
entity into groups of pages owned by the same person
– the bow tie shape emerges, even retaining the
rough equality of size among the four main compo-

Zipf’s Law
The Web is not alone in exhibiting power laws.
Data gathered on the use of language, the
population of cities, and the distribution of
wealth all show clear power-law behavior.The
frequency of words used in human language
deserves special mention: it follows the famous
Zipf’s Law, named after George Kingsley Zipf, an
early twentieth century scientist who
revolutionized our understanding of power
laws, and helped to reveal their astonishing
prevalence throughout society and nature.

Zipf’s Law states that the most common word
used in language is a constant factor (say, two
times) more common than the second most
common word, and the second most common
is twice as common as the third, etc.
Remarkably, for almost any sizeable source of
words you can think of–all New York Times
articles, or all the works of Shakespeare, or all
textbooks on molecular biology, or the
Bible–Zipf’s law holds.

In 1955, Herbert Simon sought to unify the
observations of Zipf and others by formulating
a single common explanatory model for many
of the systems displaying power-law behaviour,
including language, population, and wealth.
Benoît Mandelbrot [1953,1959] proposed a
fascinating alternative explanation for Zipf’s
Law as it relates to language. He showed that
the distribution can be understood as the end
result of centuries of adaptive maximization of
the information content of language.

Compare Figure 6.6a with Figure 6.6b. The latter
shows the distribution of outbound links on the Web
(links emanating from Web pages) instead of
inbound links. Near the right end of the graph, the
distribution looks very much the same as the
inbound link graph: a straight line on a log-log plot.
But on the left side, in the range of smaller values of
x, the distribution deviates fairly strongly from the
linear signature of a power law. There is a bump in
the distribution of outbound links not seen in the
graph of inbound links. It turns out that bumps like
these are the rule rather than the exception (in this
sense, the near perfectly straight line of Web inbound
links is rare). For example, the graph of the distribu-
tion of file sizes pictured in Figure 6.6c has an even
more pronounced bump before straightening out on
the far right. Many of the power laws observed in
nature are also marked with significant deviations in
the region of small values of x. 

Figures 6.7a, b, and c show inbound link distribu-
tions for specific e-commerce segments of the Web,
comparing the communities of online booksellers,
commercial health-related sites, and online wedding
retailers, respectively. Here we see more examples of
the modified power law: in each case, the plot
displays a significant bump on the left side before

converging toward the linear power law on the right-
hand portion of the graph. 

In the section that follows on the microscopic
web, we will examine what low-level forces are at
work in generating both the pure power law seen for
inbound links and the modified ‘bumpy’ power law
more common in other distributions. For now, simply
note that the closer a community’s distribution is to a
linear power law, the more cutthroat the competition
is to get noticed within that community, and the
harder it is for new entrants to compete with the
well-established players. The larger the bump on the
left edge of the graph (the larger the divergence from
a pure power law), the more egalitarian is the com-
munity, and the easier it is for new sites to rise to (or
near) the top. From analyzing the data underlying
Figures 6.7a, b, and c, one can infer that booksellers
– led by Amazon.com with millions of inbound links
– are extremely competitive, while wedding retailers
are less so. Commercial health sites lie somewhere in
between. Similarly, online sites for corporations and
the entertainment industry are highly competitive,
while Web sites for scientists, universities, and pho-
tographers are not.

There are multiple factors that can lead to the dif-
ferences in competition that we see. For commercial

(a) Publications b) Health (c) Weddings

Fig. 6. 7 above: Inbound link distributions for specific e-commerce segments of the Web. (a) Online booksellers, (b)
commercial health-related sites, and (c) online wedding retailers. Each plot shows increasing divergence from a pure
power law, indicating decreasing competitiveness within that community.
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seems reasonable that the status of the most popular
terms could be so self-reinforcing as to render them
more stable than the hordes of terms among the top
50,000. However, this hypothesis is not correct: in
reality, the top ten is no more stable than the top
50,000. In fact, no matter what value for N is chosen
– 10, 50, 100, 500, 1000, or 50,000 – churn rates are
unaffected. Figure 6.9 shows churn rates after one
month, two months, three months, etc., out to one
year. As expected, the longer the time frame, the
higher the churn rate, as a greater proportion of
terms filter up and down. However, for any given
time frame (say, seven months), churn rates are
nearly identical for all values of N. Here we see a
remarkable form of self-similarity: with no matter
what granularity we look at search terms – whether
we zoom in to examine the top ten, or zoom out to
examine the top 50,000 – the percent of terms
entering and leaving the identified set remains
constant.

The Middle Web

Having just seen how the Web contains some
measure of order at the highest level, we now turn

our attention to the next lower level, where groups
of authors and users form patterns on the Web. The
short version of this story is that the Web’s content is
effectively self-organized by the actions of individu-
als. Contrasting this self-organization to the more
familiar phenomenon of centralized organization, we
will see that the Web exhibits aggregate behaviour
that begins to resemble a hive-like intelligence.

Web Logs a.k.a. Blogs

One of the more recent additions to the Web site
bestiary is the Web log or blog. Blogs began as some-
thing like online diaries with authors making regular
postings that were topically focused on everything
under the sun or nothing in particular. Journalists
and pundits found the medium to be promising new
ground for self-publishing. At its best, early blogs
allowed for grass-roots journalism and an unbiased
flow of ideas and information. At its worst, blogs
were simply vanity sites.

The emergence of blogs is important for two
reasons. First, blogs, more than any other phenome-
non, blurred the line between author and user as
most blog content was about the first hand experi-
ence of visiting other Web sites. Second, blog
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nents of the bow tie. This strange structure appears
endemic to the Web and pervasive at all levels,
revealing a beautiful new type of self-similarity not
seen anywhere else.

Search Engines: Tapping The Ebb and Flow of
Ideas

In a way, search engines like Google and Yahoo!
have a window into the mind of the masses. Search
queries stream in by the second capturing people’s
thoughts, worries, and whims, whatever they happen
to be looking for at that particular time. Web sites
like Google’s Zeitgeist /
(http://www.google.com/press/zeitgeist.html), 
the Yahoo! Buzz Index (http://buzz.yahoo.com/), and
the Lycos 50 (http://50.lycos.com/) report on fads
and trends reflected in search traffic: the thoughts
and ideas that people are searching for en masse,
including what is hot and what is passé. It is fascinat-
ing to watch as memes appear, skyrocket, cycle, or
decay, as the case may be.

In watching the top search terms from one week
to the next, clearly some terms will stay perched
among the top ten, while others will drop out. For
example, as of Sunday August 3, 2003, ‘Britney

Spears’ moved from third to second place, continu-
ing a remarkable run of 123 straight weeks atop the
Yahoo! Buzz Index charts. ‘Tour de France’ also
remained in the top ten, though only for the second
week running. Meanwhile, ‘Beyoncé Knowles’ and
‘PlayStation 2’ fell from their top-ten perch the prior
week, supplanted by Kobe Bryant and Angelina Jolie,
celebrities whose profiles rose during the week,
fuelled by a criminal indictment and a new movie
release, respectively. The percent of terms that dis-
appear from the top ten from one week to the next –
equivalent to the percent of new terms, and recipro-
cal to the percent of stationary terms – is called the
churn rate. The churn rate of search terms captures
the speed at which new memes rise and old memes
fall. 

Churn rate can be computed for different numbers
of top N terms. We can examine the proportion of
terms lost from the top ten, or the proportion lost
from the top 100, or the proportion lost from the top
50,000 terms. Note also that we can compute churn
rate over any time frame: daily, weekly, monthly, etc.

You might hypothesize that churn rates would
differ depending on whether you examine the top ten
terms, or, say, the top 50,000 terms. For example, it

Fig. 6. 8:The Bow tie
structure of the Web,
consisting of a strongly
connected component
(SCC), a set of pages
that follow into the
SCC, a set of pages that
pass out of the SCC,
and a set of smaller
disconnected islands
that are themselves
SCCs.

IN OUTSCC

Fig. 6. 9 right: Month-
to-month churn rates
describing how
popular search
queries shift over
time. Churn rates
exhibit self-similarity,
remaining the same as
the number of terms
considered ranges
from 10 to 50,000.
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Hubs and Authorities

The essence of the self-organized nature of the Web
is that authors – being somewhat independent of one
another – can effectively do whatever they want.
Some will post a flat collection of favorite bookmarks
about nothing specific. Others contribute volumes of
original material that is focused on a single topic.
And still other authors produce nothing more than
small collections of links that point to things that are
all about the same thing. These last two examples of
authors – those that create original material and
those that point to focused material – are special in
that they form two halves of a single relationship.

Web pages that contain compelling original
material (without necessarily the emphasis on having
many outgoing links) are often referred to as authority
Web sites, or more simply as just authorities.
Authorities have the property that they tend to accu-
mulate incoming links because others interested in
their content will create links that point to them.
The name, authority, comes from the language of bib-
liographic studies where there is a notion of a work
of literature as being authoritative if many authors
cite it. As with literature, Web authorities are 
frequently cited but with links instead of proper 
citations.

A hub Web page (or more simply a hub) is the
complement to the authority. Hubs are akin to a
survey papers or focused reference books in that they
contain links that point to many pages that are all
about the same topic. Hubs are natural organizers of
information because they group similar things
together.

Together, hubs and authorities form a recursive
relationship that reflects the dependencies between
the two types of pages [Kleinberg 1999]. While
authorities may earn links by having original
content, they may also acquire links by the rich-get-
richer process alluded to above (and which we will
examine in greater detail in the next section), where

highly-linked sites tend to obtain even more links
due to their greater visibility. That is to say, hubs may
have to link to very popular authorities if they are to
retain their status as being a hub. (Not doing so
would be like writing a survey article on evolution
that fails to cite Darwin.) Similarly, authorities are
only truly recognized as being authorities if impor-
tant hubs link them. Together, these two facts yield a
recursive definition for what it means to be a hub or
authority.

Hubs are pages that link to authorities.

Authorities are pages that are linked by hubs.
Put simply, these two definitions are recursive

because each entity in some sense defines the other.
What is truly fascinating about this mutual depend-
ence is that Web pages – in the wild, so to speak –
seem to co-evolve via this recursive relationship.

Community Signatures

In 1999, Ravi Kumar and his colleagues surmised
that if the Web is, in fact, composed of many hubs
and authorities, then one should be able to find a
Web community core by looking for a group of hubs
that all point to the same set of authorities.
Mathematically speaking, these two groups of pages
form what is known as a bipartite core. A bipartite
structure is illustrated in Figure 6.10, and consists of
two types of objects: those in the left set and those in
the right set, with every object on the left pointing
to every object on the right. Notice that this struc-
ture is identical to what you would expect to find if
there existed some number of hubs that were all
focused on the same collection of authorities.

Kumar et al. found that there were hundreds of
thousands of community cores that contained this
exact bipartite signature. When inspected by hand,
these community cores were almost always focused
on an extremely narrow topic such as Japanese 
elementary schools, Hotels in Costa Rica, or Turkish

software – the programs that facilitate and automate
the maintenance of a blog site – would evolve in
sophistication, incorporating many new features
including user accounts, discussions, postings by
multiple individuals, rating systems (of users and
posted stories), multimedia, and search. Today,
sophisticated blog software is freely available, and
modern blog sites come in many flavors including
current event discussions, various grades of self-pub-
lished journalism, community forums of differing
degrees of speciality, and, yet still, the simple diary.

All told, blog sites represent a deliberate effort by
individuals to cooperate towards a form of commu-
nity publishing, with the authors, editors, and readers
all coming from a similar pool of individuals. Blog
sites also represent larger-scale communities, beyond
a single site, because many individuals often con-
tribute to the content of modern blog sites and the
membership of related blog sites often overlap.
Moreover, the content on one blog site often influ-
ences the content on other blogs.

Modern search engines, which use link structure
for improving the relevance of served results, have
had to co-evolve with the emergence of blogs for
multiple reasons. The primary reason is that blogs, by
and large, are quirky sites, yet they carry a dispropor-
tionate amount of influence in assessing the
importance of Web sites because they contain so
many links. When a quirky group of people link to
pages in an atypical manner, their quirks are propa-
gated to the mainstream if left unchecked.

This amplification property of blogs results in
many interesting social phenomena on the Web that
has no real-world analogue. Propagation of memes on
the Web can start with a single blog site distributing

a funny or unusual link. Other blog sites, exhibiting
almost a flocking behavior, redistribute the meme,
which impacts not only the content that people read
but also the links that persist on the Web. In this
way, ideas and information (both true, false, and oth-
erwise) can circumnavigate the globe multiple times
in a single day, making the circular influence of
linking patterns all the more pronounced.

Shared Taxonomies

Another form of deliberate cooperation by Web
authors can be found in shared taxonomies, which is
best exemplified by the Open Directory Project
(ODP) located at http://dmoz.org/. The ODP consists
of a topical taxonomy, not unlike the best-known
taxonomy at Yahoo!. However, the ODP is a strictly
volunteer effort, where individual editors assume
ownership for different topics on the Web. The vol-
unteer editors collect links to pages that are relevant
to their particular speciality and incorporate them
into their respective location within the taxonomy.
All told, the ODP has thousands of editors that
maintain links to millions of pages, which, in turn,
are incorporated into the ranking algorithms of the
most important search engines.

Clearly, the ODP is a distributed effort by individ-
uals to bring order to the Web. However, as with
blogs, the ODP represents a deliberate and inten-
tional form of cooperation by individuals. There
exists an unintentional form of cooperation by
authors that is, perhaps, even more striking than the
ODP and blogs because it represents the truest form
of self-organization; namely, one in which the indi-
viduals cooperating do not even know that they are
contributing to something larger.

The essence of the self-organized nature of the Web is that authors –

being somewhat independent of one another – can effectively do

whatever they want.
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‘the bicycle community consist of pages that predom-
inately link to bicycle pages.’ Also note that
community membership is easy to test for and
validate. Hence, if you know about the bulk of the
bicycle community, you can look at the links coming
in and out of a page in question. If more than half of
the links refer back to the bicycle community, then
the page in question is also a member of the bicycle
community.

In 2000, Gary William Flake and colleagues [Flake
2000] discovered an effective method for identifying
self-organized collections of Web pages that obeyed
the cut community definition. The method works by
recasting the community identification problem into
what is known as the s-t minimum cut network
problem. In this framework, one looks at a collection
of pages and links and asks: for two pages, s and t,
what is the smallest number of links that need to be
‘cut’ (i.e., removed) in order to completely separate
s and t from one another, where s is a page that is
indicative of the type of community that one is
looking for and t is an artificial page that represents
the whole of the Web. By looking for the smallest
number of links to cut, the procedure effectively tries
to find the smallest group of pages connected to s
(our page of interest) that nicely separates from the
rest of the Web.

Flake’s community algorithm also has the nice
attribute that it is computationally efficient. None-
theless, it is not at all clear that it should even
produce collections of pages that are all focused on a
single theme. However, in practice, the community
algorithm is remarkably successful at finding large
collections of related pages. When seeded with the
personal home pages of famous scientists, the com-
munity algorithm will find hundreds or thousands of
pages that are all focused on the specialty of the 
scientist in question [Flake 2002].

In fact, the community algorithm, and other link-
based approaches, have been shown to be very

effective in making sense of the Web. Notice the
language-independent nature of link-based methods:
since they ignore the textual content of pages, they
work equally well for pages in English, Spanish, or
Swahili, for that matter, or for pages composed nearly
entirely of images and multimedia. But here’s a secret
of the power of the community algorithm and other
methods like it: it’s not the algorithm that’s special,
it’s the Web.

Topic Affinity

Consider a completely random Web surfer, who
wanders about the Web clicking on randomly chosen
links (we will have more to say about the properties
and implication of the random surfer model in the
next section). The surfer travels from page to page,
each time moving forward by clicking on a random
link on the current page. Assuming that the surfer
starts at a random page, we can measure the relative
bond between content and links by measuring how
long it takes for the random surfer to visit pages that
drift away from the topic of the starting page.

Soumen Chakrabarti and his colleagues
[Chakrabarti 2002] found that on the whole, the cor-
respondence between the topicality of a page, and
the links that it contains is remarkably strong. In the
example of our random surfer, Chakrabarti et al.
found that for some subjects, a random surfer could
remain on topic after following as many as 5 or 10
links. Interestingly, the degree of topic drift was
strongly dependent on the starting topic. For
example, ‘soccer’ pages would drift off-topic relatively
fast, while ‘photography’ pages maintain topical focus
for many more steps.

Related to all of this is the role of anchor text to
content. Anchor text is the text that is contained in
a link (usually underlined in most browsers). The
author of a page that contains a link creates the
anchor text, but anchor text is usually intended to be
descriptive of the page that the link points to, not

student associations. But most striking, the identified
community cores are often so narrow and specific
that they are not contained in any taxonomy like the
ODP.

Because Web pages contain both regular content
and links, there are multiple ways in which two pages
can be said to be similar (or dissimilar) to each other.
Ignoring text and focusing just on links, one can
easily see that hubs within the same community core
have outbound links that are similar or identical.
Authorities within the same core have inbound links
that are similar or identical. Thus, we can speak of
two pages as being similar in content (they express
similar words and concepts), in outbound links (they
point to approximately the same pages), or in
inbound links (they are pointed to by inbound links).

One remarkable attribute of the Web is that simi-
larity in inbound or outbound links often implies
similarity in page content. This relationship means
that one can find new pages of interest by looking
only at how pages link to one another within a local
neighbourhood of a starting page. The connection
between links and content also means that one can
analyze link structure to find how topics on the Web
relate to one another.

Self-Organized Communities

The link structure of the Web is not unlike the social
network of humans. We have reciprocal relationships
with some people, and we know of people that don’t
know us, which are respectively akin to pages that
mutually link to each other and pages where one
links to the other only in one direction. Who we are
is in some sense defined by the links we have in the
human social network. Likewise, Web pages can also
be better understood by examining the context in
which pages exist within a Web community.

The notion of a Web community core, as defined
above, is powerful in the sense that it gives an unam-
biguous signature from which to identify collections
of related Web pages. However, this notion can be
considered insufficient because most Web pages will
not belong to a Web community core. How, then,
can one identify the community in which a page
belongs?

There are many different ways to define a Web
community, and to be sure, there is no absolute
correct definition. Nonetheless, some definitions for
a Web community can be used to identify largish col-
lections of pages that, in some sense, seem to belong
with one another because they are all focused on a
similar theme. We now turn to one particular defini-
tion for a Web community that is mathematically
rigorous in that it is well defined, is surprisingly intu-
itive and simple to understand, and empirically
corresponds well to real communities on the Web.

For reasons to be explained shortly, we will refer
to this type of Web community as a cut Web commu-
nity, or more simply as just a cut community. A cut
community consists of a collection of pages that pre-
dominately link to one another (with links in either
direction). That’s the whole definition; it is simple,
but yields several elegant properties.

First, note that it is a meta-definition in that it
permits one to make more specific statements like

Fig. 6. 10 above: A bipartite core on the Web: every page
on the left links to every page on the right
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trivial whims. Clearly, to understand the evolution
of the Web, we must understand how individual
pages are created and modified. However, it is simply
impossible to factor into our understanding the
details of the innumerable human motivations
behind all pages in the Web.

Instead of focusing on minutiae, we need to
abstract away as many inessential details as possible
and look instead for the simplest rules that capture
the most important aspects of the Web’s behaviour.
This modelling process will help us identify what are
the essential ingredients responsible for the self-
similar structures on the Web. But don’t be fooled by
the simplicity of the models that we will talk about.
Despite their simplicity, they capture a considerable
amount of the complexity that we’ve observed so far.
As Ian Stewart eloquently states elsewhere in this
book, simple explanations for complex observations
lie at the heart of modelling nature, and fractals are a
powerful tool in the mathematician’s arsenal for
doing so.

Modelling Web Growth

As in the previous section, let’s temporarily ignore
Web page content and focus on the links that they
contain. Moreover, let’s also ignore the direction of
all links and just focus on the fact that two pages can
be linked to one another. To better understand how
the Web evolves, we need to understand how indi-
vidual pages contribute to the overall link structure.
We will model the Web’s evolution by iterating over
the following five steps:

1. Create a new page, called p.

2. Randomly pick an existing link, l, not
connected to p.

3. Randomly select one of l’s two adjacent pages, q.

4. Add a new link between p to q.

5. Repeat steps 2-4 a total of k times.

One pass through these steps adds one new page to
the Web and k new links. Obviously, one can repeat
the entire process multiple times to add many new
pages and even more links.

The recipe above specifies what is known as a
generative model because it explicitly shows how one
takes a current snapshot of the Web, and generates a
successor to it that has grown a little bit. The model
– introduced for the Web by Albert-László Barabási
and Reka Albert [Barabási 1999] – is simple enough
that with sufficient mathematical tools, one can
effectively see how it would behave if iterated for an
infinite number of steps.

The most interesting part of the recipe for growing
the Web is in steps 2 and 3, where we pick a random
page, q, in which to connect to our new page, p. If
there were n existing pages, and we were to select
one of them purely at random, then we would find
that each page has a 1/n chance of being selected. But
that’s not we are doing. Notice that we are picking a
link, and then picking one of the two pages adjacent
to it. This means that the more connected a page is,
the more likely it is to be selected in step 2.

The selection process in step 2 can be reasoned as
follows. Think of each link as owning two lottery
tickets, and giving away one ticket each to the two
pages connected to that link. Now you can verify
that the probability that an existing page is selected
in step 2 is equal exactly to the number of lottery
tickets it has, divided by the total number of lottery
tickets possessed by all pages. Thus, the more links
(or lottery tickets) a page has, the more likely it is to
‘win’ by being selected in step 2. If a page has many
links, it’s bound to get more. But if a page has few
links, it will probably not get many more. As a result
of these facts, this pattern is often referred to as a
‘rich get richer’ phenomenon or as “preferential
linking”.

Clearly, Web page authors don’t add links to their
pages in precisely this manner. But, as we have seen,

necessarily the page that contains the link.
Computer scientists have long been working on

the problem of how to recognize when a document is
about a particular topic by analyzing a document’s
text. In this vein, scientists have used these tools to
improve search engines and related technologies.
Interestingly, many scientists studying the Web have
found that the anchor text that points to a page is
often a stronger indicator of the referred page’s
subject than its own text. This is truly a surprising
result because it means that the links that point to a
page are often a better descriptor of a page’s content
than its own title.

All of this goes to show that despite being decen-
tralized, the Web seems to ‘like’ order instead of
disorder. Authors don’t have to link to pages that
relate to their own; but they do. And authors don’t
have to use anchor text that is strongly relevant to
the pages that it refers to; but they do that too. The
bottom line is that links, instead of being unruly, are,

in fact, self-organizing. In the aggregate, connections
and content go hand-in-hand and they co-contribute
to the Web’s higher-level formation of patterns and
structure. 

Having seen the self-similarity evident in the top-
level view of the Web, and the self-organizing niches
and structures evident in the middle Web, we now
turn to the underlying low-level processes and forces
driving organization and structure on the Web.

The Microscopic Web

The Web in its most fine-grained detail is the results
of billions of individual decisions taken every day
around the globe. CNN adds a breaking story; a job
hunter updates her online résumé; a university
department deletes the homepage of a graduated
student; Amazon.com adds a new book title. All
around the world, the content of the Web is modified
in response to significant real-world events as well as

Small World Networks
Many people are familiar with the expression ‘six
degrees of separation’which suggests that for
any two people in the world, there are at most six
person-to-person relationships that separate
those two people. Thus, you and I may not have
any friends in common, but we will probably
have a friend-of-a-friend-of-a-friend in common.

The remarkable feature of small world networks
is that they contain few links relative to their
number of members. Intuitively, small world
networks have this dual property by having
many members with mostly ‘local’ relationships
(say, most of your friends and neighbours), and a
very small number of members that have ‘global’
relationships (e.g., a celebrity that is known or
knows thousands of people). Thus, the path that
joins any two random people is likely to begin
and end with some local relationships, but will

pass through some global relationships in the
middle.

Throughout this chapter, we have seen how the
Web reflects the properties of our society – and so
it does with the small world nature of human
culture [Watts 1998]. Between any two Web
pages in the Web’s largest strongly-connected
core, there are at most a few dozen links that
connect those pages. E-mail and instant
messaging relationships also form small world
networks.

The good news about small world networks is
that for those who know how to pick links to
follow, a small number of clicks will lead one to a
desirable location. The bad news is that it is also
remarkably easy to spread problems (like viruses
and misinformation) in a small world network as
well.
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more links to a page implies many things, including
more traffic, higher ranking, and more visibility, in
general. Thus, it is not too outrageous to simplify
things and just simply say that authors prefer to link
to pages that are more connected. 

While some may debate the fairness or desirabil-
ity of such a state of affairs, the ‘rich get richer’
process is a common one that arises naturally in a
large number of domains, including many social, bio-
logical, and physical systems ranging from the power
grid network to the metabolic networks of microor-
ganisms.

In an influential article published in the journal
Science in 1999, Barabási and Albert revealed a fas-
cinating discovery: their simple generative model for
Web growth is sufficient to replicate many of the key
features of the Web. Most notably, the structures gen-
erated using this simple model exhibit precisely that
same power law distribution as observed on the real
Web, and as we witnessed earlier in the section on
the macroscopic Web. 

Power Laws and Communities

Barabási and Albert’s first Web model touched off a
wave of research aimed at capturing additional
aspects of the real Web. While Barabási and Albert’s
model succeeded in capturing some of the highest-
level properties of the Web (as well as showing that
the Web is unambiguously fractal in construction), it
was somewhat incomplete in that it did not account
for how the Web operates when viewed on interme-
diate scales.

David Pennock and his colleagues [Pennock 2002]
made a simple modification to the Barabási-Albert
model that would account for some of the behaviours
of Web communities. Before we get into the details,
let’s recap some of the intuition behind power laws
and how they occur in nature.

Within the biosphere, we see far more small crea-
tures than we do larger creatures: there are many

more bacteria than there are insects; there are many
more insects than medium sized animals; and there
are still far fewer large animals, such as whales and
elephants, than just about anything else. The distri-
bution of sizes of creatures across all species is a
power law.

On the other hand, within a species, we see a dif-
ferent pattern entirely. The size, weight, and height
distributions of humans follow the more familiar bell-
shaped or Gaussian distribution. This means that
most individuals fall somewhere in the middle – that
is, there are more average sized people than small
people or large people. The trend of having more
average individuals than big or small is found in just
about all species, when a species is examined in 
isolation.

Returning to the Web, and thinking about Web
communities and inbound links as being somewhat
analogous to species and the size of animals, we find
that if one looks at the number of inbound links to a
Web page – but restricted to pages in the same com-
munity – the distribution is neither a strict
power-law, nor is it a Gaussian. Instead, it is bump-
shaped (like a Gaussian distribution) but on a
logarithmic scale (like a power-law), as we saw in
Figure 6.7. The important point in all of this is that
at the intermediate level, there is something differ-
ent going on than the strict rich-get-richer linking
patterns that the Barabási-Albert model suggests.

As a people, we all know of celebrities such as
famous actors, athletes, and politicians. But we also
know many people based on our interests, where we
live, and where we work. Likewise, Web authors
create links not just to popular pages, but also to
pages that are related to their own page in some
manner. These non-popular links are akin to the
people that we personally know, while the popular
links (say to Yahoo!) simply represent an awareness
of what the masses link to or know of in the aggre-
gate (like a celebrity).
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Randomly pick an existing link, l, not connected
to p.

Randomly select one of l’s two adjacent pages, q.

Else, if tails

Randomly pick an existing page, q, not equal to p.

Add a new link between p to q.

Repeat steps 2-4 a total of k times.

The only new difference is that in step 2, we
randomly switch between two types of new links, one
that is preferentially based as before (in steps 2a and
2b) and one that is uniformly selected in 3a. In step
3a, the page we pick, q, is independent of how many
links it has. The ‘biasness’ of the coin in step 2 influ-
ences to what degree the links tend to be
preferentially based or non-preferentially based.

Looking back at our analogy between people, step
3a is akin having an association with a person that is
not influenced by popularity, which is the main force
behind the observed bump in the community link
distributions. It turns out that this divergence from
the pure power law, while most pronounced within
topically coherent communities on the Web, also
shows up to a lesser extent in a wide variety of distri-
butions, including the distribution of outbound links
on the Web and the distribution of movie actor 
collaborations.

Web Surfing Patterns

Ultimately the Web is about people. Above our focus
was on the behavioural patterns of Web authors. In
this section, we focus on users. How do people typi-
cally surf the Web? Again, we won’t get far by
analyzing the intricacies of each and every surfer
during each of their Web use sessions. Instead, we
look instead for overall patterns of behavior and sim-
plified rules of thumb that seem to capture the

essence of observed aggregate behavior.
Along these lines, Bernardo Huberman and his

colleagues [Huberman 1998] developed a simple and
elegant model of surfing behaviour. In their model, a
user continues to click deeper and deeper on a par-
ticular path of linked pages until he or she reaches a
page of sufficiently low perceived quality; at which
point the user abandons the current path and either
gives up or begins anew, for example by typing in a
URL directly, choosing a favorite bookmark, or initi-
ating a web search.

Huberman and his colleagues showed that –
assuming surfers on the whole obey the above tend-
encies – the depth to which the typical user surfs
follows a type of power-law distribution called the
inverse Gaussian distribution. In fact, data gathered
from several different websites and user bases, over
different time periods, match the conclusions of the
model extremely well. Webmasters can even use the
model to predict which pages will receive the most
traffic on their site, and how to rearrange their site
to maximize traffic to particular pages. Hence, users,
in the aggregate, seem to surf Web pages in a fractal
manner.

Another model of surfing behavior is called the
‘random walk’ model, and aptly so. Imagine a com-
pletely random surfer. Starting at a random page, this
wandering surfer clicks on a random outgoing link,
bringing him or her to a new page. From there, the
surfer clicks another random link, moving to a third
page, etc. The surfer continues like this ad infinitum,
except that occasionally (with some small probability
at each step) the surfer restarts, ‘teleporting’ from its
current location to a completely random location.[1]

Although the random walker model is by any
measure an extreme simplification of reality, it turns
out to be very powerful.

Because of the teleportation step, we know that
the random walker can always move on to a new
page. The key question is: which Web pages will the

In an article published in the Proceedings of the
National Academy of Sciences in 2002, Pennock and
his colleagues showed two important things. First,
they showed that the distribution of inbound links
for category-specific subsets of the Web, for example
all University homepages or all movie homepages,
follows the power-law but bump-like pattern seen in

Figure 6.7. Second, they showed that a simple modi-
fication to the Barabási-Albert model predicts the
observed data on the Web with remarkable accuracy.
The new recipe looks like the following:

Create a new page, called p.

Flip a bias coin; if heads:

Generative Fractals
The Web (and the output of the Barabási and Albert’s model) may not look like
a fractal to the casual observer, partly because it does not lend itself to
visualization the way other fractals do. Nonetheless, the Web is just as much a
fractal as the more familiar eye-pleasing fractals. It is just a little too much for
the human eye to behold. However, we can see similarities between the Web
and other fractals when we examine how each is produced.

MRCM fractals are produced by iteratively
expanding parts of the fractal so that each part
contains a smaller version of the whole. After a
few iterations, the MRCM fractal will possess the
signature look and feel of a fractal.

In both cases – as well as in the Barabási and
Albert Web model – taking one stage, applying a
simple rule to it, yields the next stage, and
ultimately produces a fractal

L-systems, discovered by Aristid Lindenmayer
[Lindenmayer 1968], simulate plant growth with
only a small number of rules that specify how
‘cells’grow into other cells. As can be seen, each

iteration looks like how one would expect a
plant to grow. Different ‘seeds’and growth rules
can be used to produce different types of plant-
like structures.
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Search and the No Free Lunch Theorem

What computer scientists refer to as ‘search’ is
perhaps the hardest mathematical problem in exis-
tence. By ‘search’ computer scientists mean all of the
following: 

Teach a computer to drive with only positive and
negative reinforcement. That is, reward the
computer when it gets to a destination scratch free,
and punish it when it has an accident or goes to the
wrong destination.

Find a model that accurately predicts the stock
market both on historical data, and on future data,
and make lots of money with it.

Beat anyone in the world at chess or the game of go.
Analyze the human genome and find all genes

complicit in cancer.
Find the perfect document on the Web that satis-

fies the user’s intent as indicated by a query.

Clearly, these are all hard problems. They all share
in the fact that one is searching for a solution that is
hidden among an infinite number of inferior solu-
tions. Not only is what we are looking for hidden, but
it may also be hard to recognize it when put right in
front of your face.

Search is such an interesting problem precisely
because it resembles learning, reasoning, evolution,
and other forms of deep and profound adaptation.
The topics of neural networks, artificial intelligence,
and genetic algorithms are all subsets of the general
search problem.

There is a mathematical result, published in 1997,
due to David Wolpert and William Macready
[Wolpert 1997], referred to as the ‘No Free Lunch’
theorem (or NFL for short) that is often misunder-
stood. The theorem deals with algorithms for solving
the search problem. The theorem has both pessi-
mistic and an optimistic interpretations, hence the
confusion surrounding it. The pessimistic interpreta-
tion can be summarized as:

All search algorithms are equally bad.
Put in this way, it should be clear why so many

people are unhappy with it. In fact, if you are a scien-
tist that has invested years showing that your type of
search algorithm is better than most, than the NFL
theorem is outright slanderous.

A more complete characterization of the NFL
theorem would be:

Averaged over all possible spaces, even crazy ones
that never occur in nature, all search algorithms are
equally bad.

This alternative view clarifies the major caveat
with the NFL theorem, namely, that it is making a
statement about all search algorithms if they were
applied to all possible search problems even ones that
could never exist in our universe. There is still another
way to characterize the NFL theorem, which we
believe is both optimistic and realistic:

If your search algorithm is moulded to a particular
problem space, it can work better than most other
search algorithms.

The remaining caveat to this more gentle inter-
pretation is that the penalty for being optimized to a
particular problem domain is that the same solution
that works well in one domain may prove horrible in
every other domain. So it goes, we say.

All of this may seem to be completely unrelated
to this chapter; however, we believe that the NFL
theorem is key to understanding the current state of
the Web and how it will evolve over time. In a
nutshell, our claim is that the Web has co-evolved
with humanity, and it will continue to do so.
Moreover, we believe that the Web will approach a
level of complexity that is on par with all human
culture and with the human mind.

Simplicity, Complexity, and Search

Much of this chapter has focused on how the Web
possesses an amazing array of properties that smack
of both simplicity and complexity. To better appreci-

random walker visit most often if allowed to walk
forever? It turns out that this question can be
answered very elegantly with a remarkably straight-
forward calculation. The equations behind the
calculation are very simple, but they must be per-
formed for every page on the Web multiple times.
Instead of diving into those mathematical details, we
will instead try to capture the intuition of the
random walker, which gets at the heart of what it
means for a page to be important. If you think of a
link as being an endorsement by an author that the
page at the other end is high quality, then we get the
following recursive rule:

Web pages are important if other important pages pre-
dominately link to them.

In the above rule, we use ‘predominately’ to mean
that the page with the link has a relatively small
number of outgoing links and, hence, is only ‘voting’
for a small number of other pages. (More outgoing
links can be interpreted as an author is diluting his
or her vote.)

Larry Page and Sergey Brin, the founders of
Google, discovered in 1998 that this calculation –
which they dubbed PageRank after Larry Page – was
very effective at separating quality pages from poor

pages [Brin 1998]. In fact, when introduced, Google,
with the help of PageRank, offered such a vastly
better way of organizing the Web that Google came
to lead the Web search industry.

The power of PageRank is that it uses the links of
the Web (which are made by authors) and simulates
how an infinite number of users given infinite time
would visit those pages. The pages visited the most
by the random walkers are deemed the best. Hence,
Google makes explicit use of Web authors and
implicit use of users to do a better job of finding
quality content. 

The Web as a Mirror

We’ve now come full circle. Having examined the
Web from a variety of scales and viewpoints, we have
now seen how users, authors, and search engines all
influence one another to yield an amazing array of
self-organization, self-regulation, and self-similarity.

Ultimately, the Web’s organization is intimately
related to the complexity of human culture and to
the human mind, and it is this subtle relationship
between humanity and the Web that is responsible
for the Web’s amazing properties. In the remainder of
this chapter, we will explore how the Web can be
seen as a mirror to humanity, and we make some pre-
dictions as to where the Web is evolving.

We believe that the Web is rapidly approaching the point that it will be

humanity’s best effort of organizing the collective knowledge of all humanity.

It clearly surpasses the library of Alexandria and it will soon surpass the 

US Library of Congress and all other libraries in sheer size.
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ate this point consider how complicated a miniature
version of the Web could be with only ten pages. 

If each page is permitted to link to any of the ten,
including itself, then there are 2100 different ways in
which to connect up ten pages. This number is larger
than the number of electrons in the universe. Now,
instead of ten pages, think about billions and
consider how complicated the Web could be if
authors, pages, and users were not so regular in their
collective behaviours. A billion pages with links
pointing everywhere would truly be intractable and
effectively unimaginable because no one would be
able to make any sense out of it.

The point of this exercise is simple: the Web could
have been tremendously complex, but it is not. In
fact, the Web is exceedingly regular given its size and
the lack of central authority. Moreover, this regular-
ity can be exploited to make more effective
algorithms for finding information on the Web.

Recall from the previous section our discussion of
the PageRank algorithm. PageRank is mathemati-
cally very well understood. As an algorithm, it
performs an iterative calculation that must be
repeated multiple times, and the required number of
iterations is easily known in terms of the error rate
(associated with not running it for an infinite
number of steps) and the properties of the link struc-
ture of the Web.

If the Web was not self-organized and if the link
structure did not follow a power law, in all likelihood
PageRank would not be a practical algorithm because
its required number of iterations would be close to
infinite. Instead, we know that the Web is a forgiving
domain for PageRank, in the sense that its power law
properties all but guarantee that PageRank will
quickly converge to valuable results.

This is an extremely subtle but important point:
the Web’s self-organized and fractal properties make
it easier for algorithms to make sense of it. Moreover,
these self-organized and fractal properties are a direct

consequence of our (humanity’s) own self-organiza-
tion and fractal nature.

The Future

We believe that the Web is rapidly approaching the
point that it will be humanity’s best effort of organiz-
ing the collective knowledge of all humanity. It
clearly surpasses the library of Alexandria and it will
soon surpass the US library of Congress and all other
libraries in sheer size.

The Web will continue to become an integral part
of society, nearly blending into the background, as
much of our society transitions into a dual nature
that includes both a physical and a virtual existence.

We also believe that the generalized search
problem – and the problem of building a nearly
perfect search engine, in particular – will increase in
importance as the need to find information on the
Web becomes more ubiquitous and necessary to our
day-to-day lives. In the future, Web search engines
will radically change, ultimately possessing enough
intelligence to simultaneously recognize the needs of
the users that use it while making sense of the
plethora of available information.

In short, we believe that the Web will become a
mirror to humanity in the aggregate, and that the
search engine will become a mirror to the human
mind, and it is the self-organized and fractal nature
of the Web that is both a symptom and a cause for
this co-evolution.

1 The teleportation step is required to deal with the
sort of dead ends shown in the Bow-Tie model of
the Web. Without the teleportation step, a random
walker could effectively walk into a dead end and
never be able to return. With the teleportation
step, we are guaranteed that the random walker
could walk forever and eventually visit each page
on the Web if given enough time.
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