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ABSTRACT
We develop a framework for trading in compound securities:
financial instruments that pay off contingent on the out-
comes of arbitrary statements in propositional logic. Buying
or selling securities—which can be thought of as betting on
or against a particular future outcome—allows agents both
to hedge risk and to profit (in expectation) on subjective
predictions. A compound securities market allows agents
to place bets on arbitrary boolean combinations of events,
enabling them to more closely achieve their optimal risk ex-
posure, and enabling the market as a whole to more closely
achieve the social optimum. The tradeoff for allowing such
expressivity is in the complexity of the agents’ and auction-
eer’s optimization problems.

We develop and motivate the concept of a compound se-
curities market, presenting the framework through a series
of formal definitions and examples. We then analyze in de-
tail the auctioneer’s matching problem. We show that, with
n events, the matching problem is co-NP-complete in the
divisible case and Σp2-complete in the indivisible case. We
show that the latter hardness result holds even under severe
language restrictions on bids. With log n events, the prob-
lem is polynomial in the divisible case and NP-complete in
the indivisible case. We briefly discuss matching algorithms
and tractable special cases.
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1. INTRODUCTION
Securities markets effectively allow traders to place bets

on the outcomes of uncertain future propositions. Examples
include stock markets like NASDAQ, options markets like
CBOE [17], futures markets like CME [30], other derivatives
markets, insurance markets, political stock markets [11, 12],
sports betting markets [7, 13, 32], horse racing markets [33],
idea futures markets [16], decision markets [14] and even
market games [4, 24, 25]. The economic value of securities
markets is two-fold. First, they allow traders to hedge risk,
or to insure against undesirable outcomes. For example, the
owner of a stock might buy a put option (the right to sell
the stock at a particular price) in order to insure against
a stock downturn. Or the owner of a house may purchase
an insurance contract to hedge against unforeseen damage
to the house. Second, securities markets allow traders to
speculate, or to obtain a subjective expected profit when
market prices do not reflect their assessment of the likeli-
hood of future outcomes. For example, a trader might buy
a call option if he believes that the likelihood is high that
the price of the underlying stock will go up, regardless of
risk exposure to changes in the stock price. Because traders
stand to earn a profit if they can make effective probabil-
ity assessments, often prices in financial markets yield very
accurate aggregate forecasts of future events [10, 29, 27, 28].

Real securities markets have complex payoff structures
with various triggers. However, these can all be modeled
as collections of more basic or atomic Arrow-Debreu securi-
ties [1, 8, 20]. One unit of one Arrow-Debreu security pays
off one dollar if and only if (iff) a corresponding binary event
occurs; it pays nothing if the event does not occur. So, for
example, one unit of a security denoted 〈Acme100〉 might
pay $1 iff Acme’s stock is above $100 on January 4, 2004.
An Acme stock option as it would be defined on a finan-



cial exchange can be though of as a portfolio of such atomic
securities.1

In this paper, we develop and analyze a framework for
trading in compound securities markets with payoffs contin-
gent on arbitrary logical combinations of events, including
conditionals. For example, given binary events A, B, and
C, one trader might bid to buy three units of a security de-
noted 〈A ∧ B̄ ∨ C〉 that pays off $1 iff the compound event
A∧ B̄ ∨C occurs for thirty cents each. Another trader may
bid to sell six units of a security 〈A|C〉 that pays off $1 iff
A occurs for fifty-five cents each, conditional on event C oc-
curring, meaning that the transaction is revoked if C does
not occur (i.e., no payoff is given and the price of the se-
curity is refunded) [5]. Bids may also be divisible, meaning
that bidders are willing to accept less than the requested
quantity, or indivisible, meaning that bids must be fulfilled
either completely or not at all. Given a set of such bids,
the auctioneer faces a complex matching problem to decide
which bids are accepted for how many units at what price.
Typically, the auctioneer seeks to take on no risk of its own,
only matching up agreeable trades among the bidders, but
we also consider alternative formulations where the auction-
eer acts as a market maker willing to accept some risk.

We examine the computational complexity of the auction-
eer’s matching problem. Let the length of the description
of all the available securities be O(n). With n events, the
matching problem is co-NP-complete in the divisible case
and Σp2-complete in the indivisible case. This Σp2-complete
hardness holds even when the bidding language is signifi-
cantly restricted. With log n events, the problem is polyno-
mial in the divisible case and NP-complete in the indivisible
case.

Section 2 presents some necessary background informa-
tion, motivation, and related work. Section 3 formally de-
scribes our framework for compound securities, and defines
the auctioneer’s matching problem. Section 4 briefly dis-
cusses natural algorithms for solving the matching problem.
Section 5 proves our central computational complexity re-
sults. Section 6 discusses the possibility of tractable special
cases. Section 7 concludes with a summary and some ideas
of future directions.

2. PRELIMINARIES

2.1 Background and notation
Imagine a world where there are only two future uncertain

events of any consequence: (1) the event that one’s house is
struck by lightning by December 31, 2003, denoted struck,
and (2) the event that Acme’s stock price goes above $100
by January 4, 2004, denoted acme100. In this simple world
there are four possible future states—all possible combina-
tions of the binary events’ outcomes:

struck ∧ acme100 ,

struck ∧ acme100 ,

struck ∧ acme100 ,

struck ∧ acme100 .

Hedging risk can be thought of as an action of moving money
between various possible future states. For example, insur-
1Technically, an option is a portfolio of infinitely many
atomic securities, though it can be approximately modeled
with a finite number.

ing one’s house transfers money from future states where
struck is not true to states where it is. Selling a security
denoted 〈acme100〉—that pays off $1 iff the event acme100
occurs—transfers money from future states where Acme’s
price is above $100 on January 4 to states where it’s not.
Speculating is also an act of transferring money between
future states, though usually associated with maximizing
expected return rather than reducing risk. For example,
betting on a football team moves money from the “team
loses” state to the “team wins” state. In practice, agents
engage in a mixture of hedging and speculating, and there
is no clear dividing line between the two [18].

All possible future outcomes form a state space Ω, con-
sisting of mutually exclusive and exhaustive states ω ∈ Ω.
Often a more natural way to think of possible future out-
comes is as an event space A of linearly independent events
A ∈ A that may overlap arbitrarily. So in our toy example
struck ∧ acme100 is one of the four disjoint states, while
struck is one of the two events. Note that a set of n lin-
early independent events defines a state space Ω of size 2n

consisting of all possible combinations of event outcomes.
Conversely, any state space Ω can be factored into dlog |Ω|e
events.

Suppose that A exhaustively covers all meaningful future
outcomes (i.e., covers all eventualities that agents may wish
to hedge against and/or speculate upon). Then the exis-
tence of 2n linearly independent securities—called a com-
plete market—allows agents to distribute their wealth arbi-
trarily across future states.2 An agent may create any hedge
or speculation it desires. Under classical conditions, agents
trading in a complete market form an equilibrium where risk
is allocated Pareto optimally. If the market is incomplete,
meaning it consists of fewer than 2n linearly independent
securities, then in general agents cannot construct arbitrary
hedges and equilibrium allocations may be nonoptimal [1,
8, 19, 20].

In real-world settings, the number of meaningful events n
is large and thus the number of securities required for com-
pleteness is intractable. No truly complete market exists or
will ever exist. One motivation behind compound securities
markets is to provide a mechanism that supports the most
transfer of risk using the least number of transactions possi-
ble. Compound securities allow a high degree of expressivity
in constructing bids. The tradeoff for increased expressivity
is increased computational complexity, from both the bid-
der’s and auctioneer’s point of view.

2.2 Related work
The quest to reduce the number of financial instruments

required to support an optimal allocation of risk dates to
Arrow’s original work [1]. The requirement stated above of
“only” 2n linearly-independent securities is itself a reduction
from the most straightforward formulation. In an economy
with k standard goods, the most straightforward complete
market contains k ·2n securities, each paying off in one good
under one state realization. Arrow [1] showed that a market
where securities and goods are essentially separated, with
2n securities paying off in a single numeraire good plus k
spot markets in the standard goods, is also complete. For
our purposes, we need consider only the securities market.

2By linearly independent securities, we mean that the vec-
tors of payoffs in all future states of these securities are lin-
early independent.



Varian [34] shows that a complete market can be con-
structed using fewer than 2n securities, replacing the miss-
ing securities with options. Still, the number of linearly in-
dependent financial instruments—securities plus options—
must be 2n to guarantee completeness.

Though the requirement of 2n financial instruments can-
not be relaxed if one wants to guarantee completeness in
all circumstances, Pennock and Wellman [26] explore condi-
tions under which a smaller securities market may be opera-
tionally complete, meaning that its equilibrium is Pareto op-
timal with respect to the agents involved, even if the market
contains less than 2n securities. The authors show that in
some cases the market can be structured and “compacted”
in analogy to Bayesian network representations of joint prob-
ability distributions [23]. They show that, if all agents’
risk-neutral independencies agree with the independencies
encoded in the market structure, then the market is opera-
tionally complete. For collections of agents all with constant
absolute risk aversion, agreement on Markov independencies
is sufficient.

Bossaerts, Fine, and Ledyard [2] develop a mechanism
they call combined-value trading (CVT) that allows traders
to order an arbitrary portfolio of securities in one bid, rather
than breaking up the order into a sequence of bids on indi-
vidual securities. If the portfolio order is accepted, all of
the implied trades on individual securities are executed si-
multaneously, thus eliminating so-called execution risk that
prices will change in the middle of a planned sequence of or-
ders. The authors conduct laboratory experiments showing
that, even in thin markets where ordinary sequential trad-
ing breaks down, CVT supports efficient pricing and allo-
cation. Note that CVT differs significantly from compound
securities trading. CVT allows instantaneous trading of any
linear combination of securities, while compound securities
allow more expressive securities that can encode nonlinear
boolean combinations of events. For example, CVT may al-
low an agent to order securities 〈A〉 and 〈B〉 in a bundle that
pays off as a linear combination of A and B,3 but CVT won’t
allow the construction of a compound security 〈A ∧B〉 that
pays off $1 iff both A and B occur, or a compound security
〈A|B〉.

Related to CVT are combinatorial auctions [6, 21] and ex-
changes [31], mechanisms that have recently received quite
a bit of attention in the economics and computer science lit-
eratures. Combinatorial auctions allow bidders to place dis-
tinct values on all possible bundles of goods rather than just
on individual goods. In this way bidders can express substi-
tutability and complementarity relationships among goods
that cannot be expressed in standard parallel or sequential
auctions. Compound securities differ from combinatorial
auctions in concept and complexity. Compound securities
allow bidders to construct an arbitrary bet on any of the 22n

possible compound events expressible as logical functions of
the n base events, conditional on any other of the 22

n

com-
pound events. Agents optimize based on their own subjec-
tive probabilities and risk attitude (and in general, their be-
liefs about other agents’ beliefs and utilities, ad infinitum).
The central auctioneer problem is identifying arbitrage op-
portunities: that is, to match bets together without taking
on any risk. Combinatorial auctions, on the other hand, al-
low bids on any of the 2n bundles of n goods. Typically,

3Specifically, one unit of each pays off $2 iff both A and B
occur, $1 iff A or B occurs (but not both), and $0 otherwise.

uncertainty—and thus risk—is not considered. The central
auctioneer problem is to maximize social welfare. Also note
that the problems lie in different complexity classes. While
clearing a combinatorial auction is polynomial in the divis-
ible case and NP-complete in the indivisible case, matching
in a compound securities market is NP-complete in the di-
visible case and Σp2-complete in the indivisible case. In fact,
even the problem of deciding whether two bids on compound
securities match, even in the divisible case, is NP-complete
(see Section 5.2).

There is a sense in which it is possible to translate our
matching problem for compound securities into an analo-
gous problem for clearing two-sided combinatorial exchanges
[31] of exponential size. Specifically, if we regard payoff in a
particular state as a good, then compound securities can be
viewed as bundles of (fractional quantities of) such goods.
The material balance constraint facing the combinatorial
auctioneer corresponds to a restriction that the compound-
security auctioneer be disallowed from assuming any risk.
Note that this translation is not at all useful for addressing
the compound-security matching problem, as the resulting
combinatorial exchange has an exponential number of goods.

Hanson [15] develops a market mechanism called a market
scoring rule that is especially well suited for allowing bets
on a combinatorial number of outcomes. The mechanism
maintains a joint probability distribution over all 2n states,
either explicitly or implicitly using a Bayesian network or
other compact representation. At any time any trader who
believes the probabilities are wrong can change any part
of the distribution by accepting a lottery ticket that pays
off according to a scoring rule (e.g., the logarithmic scor-
ing rule) [35], as long as that trader also agrees to pay off
the most recent person to change the distribution. In the
limit of a single trader, the mechanism behaves like a scor-
ing rule, suitable for polling a single agent for its probabil-
ity distribution. In the limit of many traders, it produces a
combined estimate. Since the market essentially always has
a complete set of posted prices for all possible outcomes,
the mechanism avoids the problem of thin markets, or illiq-
uidity, that necessarily plagues any market containing an
exponential number of alternative investments. The mecha-
nism requires a patron to pay off the final person to change
the distribution, though the patron’s payment is bounded.
Though Hanson offers some initial suggestions, several open
problems remain, including efficient methods for represent-
ing and updating the joint distribution and recording traders
positions and portfolios, without resorting to exponential
time and space algorithms.

Fagin, Halpern, and Megiddo [9] give a sound and com-
plete axiomatization for deciding whether sets of probabilis-
tic inequalities are consistent. Bids for compound securities
can be thought of as expressions of probabilistic inequali-
ties: for example, a bid to buy 〈A ∧ B〉 at price 0.3 is a
statement that the probability of A∧B is greater than 0.3.
If a set of single-unit bids correspond to a set of inconsistent
probabilistic inequalities, then there is a match. However,
because they are interested in a much different framework,
Fagin et al. do not consider several complicating factors spe-
cific to the securities market framework: namely, handling
multi-unit or fractional bid quantities, identifying matches,
choosing among multiple matches, and optimizing based on
probabilities and risk attitudes. We address these issues be-
low.



3. FRAMEWORK FOR TRADING IN COM-
POUND SECURITIES

3.1 High-level description
Common knowledge among agents is the set of events A.

There are no predefined securities. Instead, agents offer to
buy or sell securities of their own design that pay off contin-
gent on logical combinations of events and event negations.
Combination operators may include conjunctions, disjunc-
tions, and conditionals.

For all practical purposes, it is impossible for agents to
trade in enough securities (2n) to form a complete market,
so agents must devise their best tradeoff between the num-
ber and complexity of their bids, and the extent to which
their risks are hedged and desirable bets are placed. In its
most general form, the problem is game-theoretic in nature,
since what an agent should offer depends on what it believes
other agents will accept. At the other end of the spectrum, a
simplified version of the problem is to optimize bids only on
currently available securities at current prices. In between
these two formulations are other possible interesting opti-
mization problems. Approximation algorithms might also
be pursued.

The auctioneer faces a nontrivial problem of matching buy
and sell orders to maximize surplus (the cash and securities
left over after accepted bids are fulfilled). For example, offers
to sell 〈A1A2〉 at $0.2 and 〈A1Ā2〉 at $0.1 can match with an
offer to buy 〈A1〉 at $0.4, with surplus $0.1. Or an offer to
sell 〈A1〉 at $0.3 can match with an offer to buy 〈A1A2〉 at
$0.4, with surplus $0.1 in cash and 〈A1Ā2〉 in securities. In
general, a single security might qualify for multiple matches,
but only one can be transacted. So the auctioneer must find
the optimal set of matches that maximizes surplus, which
could be measured in a number of ways. Again, approxima-
tion algorithms might be considered. In another formula-
tion, the auctioneer functions as a market maker willing to
take on a certain amount of risk.

Informally, our motivation is to provide a mechanism that
allows a very high degree of expressivity in placing hedges
and bets, and is also capable of approximating the optimal
(complete-market) allocation of risk, trading off the number
and complexity of securities and transactions needed.

3.2 Formal description

3.2.1 Securities
We use φ and ψ to denote arbitrary boolean formulas, or

logical combinations of events in A. We denote securities
〈φ|ψ〉. Securities pay off $1 if and only if (iff) φ and ψ are
true, pay off $0 iff φ is false and ψ is true, and are canceled
(i.e., any price paid is refunded) iff ψ is false. We define
T ≡ Ω to be the event “true” and F ≡ ∅ to be the event
“false”. We abbreviate 〈φ|T 〉 as 〈φ〉.

3.2.2 Orders
Agents place orders, denoted o, of the form “q units of

〈φ|ψ〉 at price p per unit”, where q > 0 implies a buy
order and q < 0 implies a sell order. We assume agents
submitting buy (sell) orders will accept any price p∗ ≤ p
(p∗ ≥ p). We distinguish between divisible and indivisible
orders. Agents submitting divisible orders will accept any
quantity αq where 0 < α ≤ 1. Agents submitting indivis-
ible orders will accept only exactly q units, or none at all.

We believe that, given the nature of what is being traded
(state-contingent dollars), most agents will be content to
trade using divisible orders.

Every order o can be translated into a payoff vector Υ

across all states ω ∈ Ω. The payoff Υ〈ω〉 in state ω is q ·
1ω∈ψ(1ω∈φ − p), where 1ω∈E equals 1 iff ω ∈ E and zero
otherwise. Recall that the 2n states correspond to the 2n

possible combinations of event outcomes. We index multiple
orders with subscripts (e.g., oi and Υi). Let the set of all
orders be O and the set of all corresponding payoff vectors
be P.

Example 1. (Translating orders into payoff vectors) Sup-
pose that |A| = 3. Consider an order to buy two units of
〈A2 ∨A3|A1〉 at price $0.8. The corresponding payoff vector
is:

Υ = 〈Υ〈A1A2A3〉,Υ〈A1A2Ā3〉,Υ〈A1Ā2A3〉, . . . ,Υ〈Ā1Ā2Ā3〉〉

= 2 · 〈0.2, 0.2, 0.2,−0.8, 0, 0, 0, 0〉

2

3.2.3 The matching problem
The auctioneer’s task, called the matching problem, is to

determine which orders to accept among all orders o ∈ O.
Let αi be the fraction of order oi accepted by the auctioneer
(in the indivisible case, αi must be either 0 or 1; in the
divisible case, αi can range from 0 to 1). If αi = 0, then
order oi is considered rejected and no transactions take place
concerning this order. For accepted orders (αi > 0), the
auctioneer receives the money lost by bidders and pays out
the money won by bidders, so the auctioneer’s payoff vector
is:

Υauc =
X

Υi∈P

−αiΥi.

We also call the auctioneer’s payoff vector the surplus vector,
since it is the (possibly state-contingent) money left over
after all accepted orders are filled.

Assume that the auctioneer wants to choose a set of orders
so that it is guaranteed not to lose any money in any future
state, but that the auctioneer does not necessarily insist on
obtaining a positive benefit from the transaction (i.e., the
auctioneer is content to break even).

Definition 1. (Matching problem, indivisible case) Given
a set of orders O, does there exist αi ∈ {0, 1} with at least
one αi = 1 such that

∀ω,Υ〈ω〉
auc ≥ 0?

In other words, does there exist a nonempty subset of orders
that the auctioneer can accept without risk? 2

If ∀ω,Υ〈ω〉
auc = c where c is nonnegative, then the surplus

leftover after processing this match is c dollars. Let m =

minω[Υ
〈ω〉
auc]. In general, processing a match leaves m dollars

in cash and Υ
〈ω〉
auc −m in state-contingent dollars, which can

then be translated into securities.

Example 2. (Indivisible order matching) Suppose |A| =
2. Consider an order to buy one unit of 〈A1A2〉 at price
0.4 and an order to sell one unit of 〈A1〉 at price 0.3. The



corresponding payoff vectors are:

Υ1 = 〈Υ〈A1A2〉
1 ,Υ

〈A1Ā2〉
1 ,Υ

〈Ā1A2〉
1 ,Υ

〈Ā1Ā2〉
1 〉

= 〈 0.6, −0.4, −0.4, −0.4〉
Υ2 = 〈 −0.7, −0.7, 0.3, 0.3〉

The auctioneer’s payoff vector (the negative of the component-
wise sum of the above two vectors) is:

Υauc = −Υ1 − Υ2 = 〈0.1, 1.1, 0.1, 0.1〉.

Since all components are nonnegative, the two orders match.
The auctioneer can process both orders, leaving a surplus of
$0.1 in cash and one unit of 〈A1Ā2〉 in securities. 2

Now consider the divisible case, where order can be par-
tially filled.

Definition 2. (Matching problem, divisible case) Given
a set of orders O, does there exist αi ∈ [0, 1] with at least
one αi > 0 such that

∀ω,Υ〈ω〉
auc ≥ 0,

2

Example 3. (Divisible order matching) Suppose |A| = 2.
Consider an order to sell one unit of 〈A1〉 at price $0.5, an
order to buy one unit of 〈A1A2|A1 ∨A2〉 at price $0.5, and
an order to buy one unit of 〈A1|Ā2〉 at price $0.4. The
corresponding payoff vectors are:

Υ1 = 〈Υ〈A1A2〉
1 ,Υ

〈A1Ā2〉
1 ,Υ

〈Ā1A2〉
1 ,Υ

〈Ā1Ā2〉
1 〉

= 〈 −0.5, −0.5, 0.5, 0.5〉
Υ2 = 〈 0.5, −0.5, −0.5, 0〉
Υ3 = 〈 0, 0.6, 0, −0.4〉

It is clear by inspection that no non-empty subset of whole
orders constitutes a match: in all cases where αi ∈ {0, 1}
(other than all αi = 0), at least one state sums to a positive
amount (negative for the auctioneer). However, if α1 =
α2 = 3/5 and α3 = 1, then the auctioneer’s payoff vector is:

Υauc = −
3

5
Υ1 −

3

5
Υ2 − Υ3 = 〈0, 0, 0, 0.1〉,

constituting a match. The auctioneer can process 3/5 of the
first and second orders, and all of the third order, leaving a
surplus of 0.1 units of 〈Ā1Ā2〉. In this example, a divisible
match exists even though an indivisible match is not possible;
we examine the distinction in detail in Section 5, where we
separate the two matching problems into distinct complexity
classes. 2

The matching problems defined above are decision prob-
lems: the task is only to show the existence or nonexistence
of a match. However, there may be multiple matches from
which the auctioneer can choose. Sometimes the choices are
equivalent from the auctioneer’s perspective; alternatively,
an objective function can be used to find an optimal match
according to that objective.

Example 4. (Auctioneer alternatives I) Suppose |A| =
2. Consider an order to sell one unit of 〈A1〉 at price $0.7,
an order to sell one unit of 〈A2〉 at price $0.7, an order to
buy one unit of 〈A1A2〉 at price $0.4, an order to buy one
unit of 〈A1Ā2〉 at price $0.4, and an order to buy one unit

of 〈Ā1A2〉 at price $0.4. The corresponding payoff vectors
are:

Υ1 = 〈−0.3,−0.3, 0.7, 0.7〉
Υ2 = 〈−0.3, 0.7,−0.3, 0.7〉
Υ3 = 〈 0.6,−0.4,−0.4,−0.4〉
Υ4 = 〈−0.4, 0.6,−0.4,−0.4〉
Υ5 = 〈−0.4,−0.4, 0.6,−0.4〉

Consider the indivisible case. The auctioneer could choose
to accept bids 1, 3, and 4 together, or the auctioneer could
choose to accept bids 2, 3, and 5 together. Both constitute
matches, and in fact both yield identical payoffs (Υauc =
〈0.1, 0.1, 0.1, 0.1〉, or $0.1 in cash) for the auctioneer. 2

Example 5. (Auctioneer alternatives II) Suppose |A| =
2. Consider an order to sell two units of 〈A1〉 at price $0.6,
an order to buy one unit of 〈A1A2〉 at price $0.3, and an
order to buy one unit of 〈A1Ā2〉 at price $0.5. The corre-
sponding payoff vectors are:

Υ1 = 〈−0.4,−0.4, 0.6, 0.6〉
Υ2 = 〈 0.7,−0.3,−0.3,−0.3〉
Υ3 = 〈−0.5, 0.5,−0.5,−0.5〉

Consider the divisible case. The auctioneer could choose to
accept one unit each of all three bids, yielding a payoff to
the auctioneer of $0.2 in cash (Υauc = 〈0.2, 0.2, 0.2, 0.2〉).
Alternatively, the auctioneer could choose to accept 4/3 units
of bid 1, and one unit each of bids 2 and 3, yielding a payoff
to the auctioneer of 1/3 units of security 〈A1〉. Both choices
constitute matches (in fact, accepting any number of units
of bid 1 between 1 and 4/3 can be part of a match), though
depending on the auctioneer’s objective, one choice might
be preferred over another. For example, if the auctioneer
believes that A1 is very likely to occur, it may prefer to accept
4/3 units of bid 1. 2

There are many possible criteria for the auctioneer to de-
cide among matches, all of which seem reasonable in some
circumstances. One natural quantity to maximize is the
volume of trade among bidders; another is the auctioneer’s
utility, either with or without the arbitrage constraint.

Definition 3. (Trade maximization problem) Given a set
of indivisible (divisible) orders O, choose αi ∈ {0, 1} (αi ∈
[0, 1]) to maximize

X

i

αiqi,

under the constraint that

∀ω,Υ〈ω〉
auc ≥ 0.

2

Another reasonable variation is to maximize the total per-
cent of orders filled, or

P

i αi, under the same (risk-free)

constraint that ∀ω,Υ〈ω〉
auc ≥ 0.

Definition 4. (Auctioneer risk-free utility-maximization
problem) Let the auctioneer’s subjective probability for each
state ω be Pr(ω), and let the auctioneer’s utility for y dol-
lars be u(y). Given a set of indivisible (divisible) orders O,
choose αi ∈ {0, 1} (αi ∈ [0, 1]) to maximize

X

ω∈Ω

Pr(ω)u(Υ〈ω〉
auc),



under the constraint that

∀ω,Υ〈ω〉
auc ≥ 0.

2

Definition 5. (Auctioneer standard utility-maximization
problem) Let the auctioneer’s subjective probability for each
state ω be Pr(ω), and let the auctioneer’s utility for y dol-
lars be u(y). Given a set of indivisible (divisible) orders O,
choose αi ∈ {0, 1} (αi ∈ [0, 1]) to maximize

X

ω∈Ω

Pr(ω)u
“

Υ〈ω〉
auc

”

.

2

This last objective function drops the risk-free (arbitrage)
constraint. In this case, the auctioneer is a market maker
with beliefs about the likelihood of outcomes, and the auc-
tioneer may actually lose money is some outcomes.

Still other variations and other optimization criteria seem
reasonable, including social welfare, etc. It also seems rea-
sonable to suppose that the surplus be shared among bidders
and the auctioneer, rather than retained solely by the auc-
tioneer. This is analogous to choosing a common transaction
price in a double auction (e.g., the midpoint between the bid
and ask prices), rather than the buyer paying the bid price
and the seller receiving the ask price, with the difference
going to the auctioneer. The problem becomes more com-
plicated when dividing surplus securities, in part because
they are valued differently by different agents. Formulating
reasonable sharing rules and examining the resulting incen-
tive properties seems a rich and promising avenue for further
investigation.

4. MATCHING ALGORITHMS
The straightforward algorithm for solving the divisible

matching problem is linear programming; we set up an ap-
propriate linear program in Section 5.1. The straightforward
algorithm for solving the indivisible matching problem is in-
teger programming. With n events, to set up the appropri-
ate linear or integer programs, simply writing out the payoff
vectors in the straightforward way requires O(2n) space.

There is some hope that specialized algorithms that ex-
ploit structure among bids can perform better in terms of
average-case time and space complexity. For example, in
some cases matches can be identified using logical reduction
techniques, without writing down the full payoff vectors. So
a match between the following bids:

• sell 1 of 〈A1A2〉 at $0.2

• sell 1 of 〈A1Ā2〉 at $0.1

• buy 1 of 〈A1〉 at $0.4

can be identified by reducing the first two bids to an equiv-
alent offer to sell 〈A1〉 at $0.3 that clearly matches with
the third bid. Formalizing a logical-reduction algorithm for
matching, or other algorithms that can exploit special struc-
ture among the bids, is a promising avenue for future work.

5. THE COMPUTATIONAL COMPLEXITY
OF MATCHING

In this section we examine the computational complexity
of the auctioneer’s matching problem. Here n refers to the
problem’s input size that includes descriptions of all of the
buy and sell orders. We also assume that n bounds the
number of base securities.

We consider four cases based on two parameters:

1. Whether to allow divisible or indivisible orders.

2. The number of securities. We consider two possibili-
ties:

(a) O(log n) base securities yielding a polynomial num-
ber of states.

(b) An unlimited number of base securities yielding
an exponential number of states.

We show the following results.

Theorem 1. The matching problem is

1. computable in polynomial-time for O(log n) base secu-
rities with divisible orders.

2. co-NP-complete for unlimited securities with divisible
orders.

3. NP-complete for O(log n) base securities with indivis-
ible orders.

4. Σp2-complete for unlimited securities with indivisible
orders.

5.1 Small number of securities with divisible
orders

We can build a linear program based on Definition 2. We
have variables αi. For each i, we have

0 ≤ αi ≤ 1

and for each state ω in Ω we have the constraint

Υ〈ω〉
auc =

X

i

−αiΥ
〈ω〉
i ≥ 0.

Given these constraints we maximize
X

i

αi.

A set of orders has a matching exactly when
P

i αi > 0.
With O(log n) base securities, we have |Ω| bounded by a

polynomial so we can solve this linear program in polynomial
time.

Note that one might argue that one should maximize some

linear combination of the −Υ
〈ω〉
i s to maximize the surplus.

However this approach will not find matchings that have
zero surplus.

5.2 Large number of securities with divisible
orders

With unlimited base securities, the linear program given
in Section 5.1 has an exponential number of constraint equa-
tions. Each constraint is short to describe and easily com-
putable given ω.



Let m ≤ n be the total number of buy and sell orders.
By the theory of linear programming, an upper bound on
the objective function can be forced by a collection of m+1
constraints. So if no matching exists there must exist m+1
constraints that force all the αi to zero. In nondeterministic
polynomial-time we can guess these constraints and solve
the reduced linear program. This shows that matching is in
co-NP.

To show co-NP-completeness we reduce the NP-complete
problem of Boolean formula satisfiability to the nonexistence
of a matching. Fix a formula φ. Let the base securities be
the variables of φ and consider the single security 〈φ〉 with
a buy order of 0.5. If the formula φ is satisfiable then there
is some state with payoff 0.5 and no fractional unit of the
security 〈φ〉 is a matching. If the formula φ is not satisfiable
then every state has an auctioneer’s payoff of 0.5 and a single
unit of the security 〈φ〉 is a matching.

One could argue that if the formula φ is not satisfiable
then no fully rational buyer would want to buy 〈φ〉 for a cost
of 0.5. We can get around this problem by adding auxiliary
base securities, A and B, and defining two securities

〈τ 〉 = (φ ∧A) ∨ (A ∧B)

〈τ ′〉 = (φ ∧A) ∨ (A ∧B)

with separate buy orders of 0.5 on each.
If φ were satisfiable then in the state corresponding to

the satisfying assignment and both A and B to be true, 〈τ 〉
and 〈τ ′〉 both have an auctioneer’s payoff of −0.5 so even no
divisible matching can exist.

If φ were not satisfiable then one unit of each would be a
matching since in every state at least one of 〈τ 〉 or 〈τ ′〉 are
false.

5.3 Small number of securities with indivisible
orders

This case is easily seen to be in NP: Just nondeterminis-
tically guess a nonempty subset S of orders and check for
each state ω in Ω that

Υ〈ω〉
auc =

X

i∈S

−Υ
〈ω〉
i ≥ 0.

Since |Ω| and |S| are bounded by a polynomial in n, the
verification can be done in polynomial time.

To show that matching is NP-complete we reduce the NP-
complete problem EXACT COVER BY 3-SETS (X3C) to a
matching of securities.

The input to X3C consists of a set X and a collection C
of 3-element subsets of X. The input (X,C) is in X3C if C
contains an exact cover of X, i.e., there is a subcollection
C′ of C such that every element of X occurs in exactly one
member of C′. Karp showed that X3C is NP-complete.

Suppose we have an instance (X,C) with the vector X =
{x1, . . . , x3q} and C = {c1, . . . , cm}.

We set Ω = {e1, . . . , e3q , r, s} and define securities labelled
〈φ1〉, . . . , 〈φm〉, 〈ψ1〉, . . . , 〈ψq〉 and 〈τ 〉, as follows:

• Security 〈φi〉 is true in state r, and is true in state ek
if k is not in ci.

• Security 〈ψj〉 is true only in state s.

• Security 〈τ 〉 is true in each state ek but not r or s.

We have buy orders on each 〈φi〉 and 〈ψj〉 security for
0.5 − 1

8q
and a buy order on 〈τ 〉 for 0.5.

We claim that a matching exists if and only if (X,C) is
in X3C.

If (X,C) is in X3C, let C ′ be the subcollection that covers
each element of X exactly once. Note that |C ′| = q.

We claim the collection consisting of 〈φi〉 for each ci in
C′, every 〈ψj〉 and 〈τ 〉 has a matching.

In each state ek we have an auctioneer’s payoff of

(.5 −
1

8q
) + (q − 1)(−.5 −

1

8q
) + q(.5 −

1

8q
) − .5

= .5 − 2q
1

8q
= .25 ≥ 0.

In states r and s the auctioneer’s payoffs are

−q(.5 +
1

8q
) + −q(−.5 +

1

8q
) + .5 = −5 − 2q

1

8q
= .25 ≥ 0.

Suppose now that (X,C) is not in X3C but there is a
matching. Consider the number q′ of the 〈φi〉 in that match-
ing and q′′ the number of 〈ψj〉 in the matching. Since a
matching requires a nonempty subset of the orders and 〈τ 〉
by itself is not a matching we have q′ + q′′ > 0.

We have three cases.
q′ > q: In state r, the auctioneer’s payoff is

−q′(.5 +
1

8q
) − q(−.5 +

1

8q
) + .5 ≤ −(q′ + q)

1

8q
< 0.

q′′ > q′: In state s, the auctioneer’s payoff is

−q′′(.5 +
1

8q
) − q′(−.5 +

1

8q
) + .5 ≤ −(q′′ + q′)

1

8q
< 0.

q′′ ≤ q′ ≤ q: Consider the set C ′ consisting of the ci
where 〈φi〉 is in the matching. There must be some state
ek not in any of the ci or C′ would be an exact cover. The
auctioneer’s payoff in ek is at most

−q′(.5 +
1

8q
) − q′′(−.5 +

1

8q
) ≤ −(q′′ + q′)

1

8q
< 0.

5.4 Large Number of Securities with Indivisi-
ble Orders

The class Σp2 is the second level of the polynomial-time
hierarchy. A language L is in Σp2 if there exists a polynomial
p and a set A in P such that x is in L if and only if there
is a y with |y| = p(|x|) such that for all z, with |z| = p(|x|),
(x, y, z) is in A. The class Σp2 contains both NP and co-
NP. Unless the polynomial-time hierarchy collapses (which
is considered unlikely), a problem that is complete for Σp2 is
not contained in NP or co-NP.

We will show that computing a matching is Σp2-complete,
and remains so even for quite restricted types of securities,
and hence is (likely) neither in NP or co-NP. While it may
seem that being NP-complete or co-NP-complete is “hard
enough,” there are further practical consequences of being
outside of NP and co-NP. If the matching problem were in
NP, one could use heuristics to search for and verify a match
if it exists; even if such heuristics fail in the worst case, they
may succeed for most examples in practice. Similarly, if
the matching problem were in co-NP, one might hope to at
least heuristically rule out the possibility of matching. But
for problems outside of NP or co-NP, there is no framework
for verifying that a heuristically derived answer is correct.
Less formally, for NP (or co-NP)-complete problems, you
have to be lucky; for Σp2-complete problems, you can’t even
tell if you’ve been lucky.



We note that the existence of a matching is in Σp2 : We
use y to choose a subset of the orders and z to represent
a state ω with (x, y, z) in A if the set of orders has a total
nonpositive auctioneer’s payoff in state ω.

We prove a stronger theorem which implies that matching
is in Σp2 . Let S1, . . . , Sn be a set of securities, where each
security Si has cost ci and pays off pi whenever formula Ci
is satisfied. The 0 − 1-matching problem asks whether one
can, by accepting either 0 or 1 of each security, guarantee a
worst-case payoff strictly larger than the total cost.

Theorem 2. The 0−1-matching problem is Σp2-complete.
Furthermore, the problem remains Σp2-complete under the
following two special cases:

1. For all i, Ci is a conjunction of 3 base events (or their
negations), pi = 1, and ci = cj for all i and j.

2. For all i, Ci is a conjunction of at most 2 base securi-
ties (or their negations).

These hardness results hold even if there is a promise that
no subset of the securities guarantees a worst-case payoff
identical to their cost.

To prove Theorem 2, we reduce from the “standard” Σp2
problem that we call T∃∀BF. Given a boolean formula φ
with variables x1, . . . , xn and y1, . . . , yn is the following fully-
quantified formula true

∃x1 . . . ∃xn∀y1 . . . ∀yn φ(x1, . . . , xn, y1, . . . , yn)?

The problem remains Σp2-complete when

φ(x1, . . . , xn, y1, . . . , yn)

is restricted to being a disjunction of conjunctions of at most
3 variables (or their negations), e.g.,

φ(x1, . . . , xn, y1, . . . , yn) =

(x1 ∧ x̄3 ∧ y2) ∨ (x2 ∧ y3 ∧ y7) ∨ · · · .

This form, without the bound on the conjunction size, is
known as disjunctive normal form (DNF); the restriction to
conjunctions of 3 variables is 3-DNF.

We reduce T∃∀BF to finding a matching. For the simplest
reduction, we consider the matching problem where one has
a set of Arrow-Debreu securities whose payoff events are
conjunctions of the base securities, or their negations. The
auctioneer has the option of accepting either 0 or 1 of each
of the given securities.

We first reduce to the case where the payoff events are
conjunctions of arbitrarily many base events (or their nega-
tions). By a standard trick we can reduce the number of
base events in each conjunction to 3, and with a slight twist
we can even ensure that all securities have the same price as
well as the same payoff. Finally, we show that the problem
remains hard even if only conjunctions of 2 variables are
allowed, though with securities that deviate slightly from
Arrow-Debreu securities in that they may have varying, non
unit payoffs.

5.4.1 The basic reduction
Before describing the securities, we give some intuition.

The T∃∀BFproblem may be viewed as a game between a
selector and an adversary. The selector sets the xi variables,
and then the adversary sets the yi variables so as to falsify

the formula φ. We can view the 0 − 1-matching problem as
one in which the auctioneer is a buyer who buys securities
corresponding to disjunctions of the base events, and then
the adversary sets the values of the base events to minimize
the payoff from the securities.

We construct our securities so that the optimal buying
strategy is to buy n “expensive” securities along with a set
of “cheap” securities, of negligible cost (for some cases we
can modify the construction so that all securities have the
same cost). The total cost of the securities will be just
under 1, and each security pays off 1, so the adversary must
ensure that none of the securities pays off. Each expensive
security forces the adversary to set some variable, xi to a
particular value to prevent the security from paying off; this
corresponds to setting the xi variables in the original game.
The cheap securities are such that preventing every one of
of these securities from paying off is equivalent to falsifying
φ in the original game.

Among the technical difficulties we face is how to prevent
the buyer from buying conflicting securities, e.g., one that
forces xi = 0 and the other that forces xi = 1, allowing for
a trivial arbitrage. Secondly, for our analysis we need to
ensure that a trader cannot spend more to get more, say by
spending 1.5 for a set of securities with the property that at
least 2 securities pay off under all possible events.

For each of the variables {xi}, {yi} in φ, we add a cor-
responding base security (with the same labels). For each
existential variable xi we add additional base securities, ni
and zi. We also include a base security Q.

In our basic construction, each expensive security costs C
and each cheap security costs ε; all securities pay off 1. We
require that Cn+ε(|cheap securities|) < 1 and C(n+1) > 1.
That is, one can buy n expensive securities and all of the
cheap securities for less than 1, but one cannot buy n + 1
expensive securities for less than 1. We at times refer to a
security by its payoff clause.

Remark: We may loosely think of ε as 0. However, this
would allow one to buy a security for nothing that pays (in
the worst case) nothing. By making ε > 0 , we can show
it hard to distinguish portfolios that guarantee a positive
profit from those that risk a positive loss. Setting ε > 0 will
also allow us to show hardness results for the case where all
securities have the same cost.

For 1 ≤ i ≤ n, we have two expensive securities with
payoff clauses (x̄i∧Q) and (n̄i∧Q) and two cheap securities
with payoff clauses (xi ∧ z̄i) and (ni ∧ z̄i).

For each clause C ∈ φ, we convert every negated variable
x̄i into ni and add the conjunction z1 ∧ · · · ∧ zn. Thus, for a
clause C = (x2 ∧ x̄7 ∧ ȳ5) we construct a cheap security SC,
with payoff clause

(z1 ∧ · · · ∧ zn ∧ x2 ∧ n7 ∧ ȳ5).

Finally, we have a cheap security with payoff clause (Q̄).
We now argue that a matching exists iff

∃x1 . . . ∃xn∀y1 . . . ∀yn φ(x1, . . . , xn, y1, . . . , yn).

We do this by successively constraining the buyer and the
adversary, eliminating behaviors that would cause the other
player to win. The resulting “reasonable” strategies corre-
spond exactly to the game version of T∃∀BF.

First, observe that if the adversary sets all of the base
securities to false (0), then only the (Q̄) security will pay off.



Thus, no buyer can buy more than n expensive securities
and guarantee a profit. The problem is thus whether one
can buy n expensive securities and all the cheap securities,
so that at for any setting of the base events at least one
security will pay off.

Clearly, the adversary must make Q hold, or the (Q̄) se-
curity will pay off. Next, we claim that for each i, 1 ≤ i ≤ i,
the auctioneer must buy at least one of the (x̄i ∧ Q) and
(n̄i ∧Q) securities. This follow from the fact that if the ad-
versary sets xi, ni and zi to be false, and every other base
event to be true, then only the (x̄i ∧ Q) and (n̄i ∧ Q) se-
curities will pay off. As no auctioneer can buy more than
n expensive securities, it must therefore buy exactly one of
(x̄i ∧ Q) or (n̄i ∧ Q), for each i, 1 ≤ i ≤ n. For the rest
of the analysis, we assume that the auctioneer follows this
constraint.

Suppose that the buyer buys (x̄i∧Q). Then the adversary
must set xi to be true (since it must set Q to be true), or the
security will pay off. It must then set zi to be true or (xi∧z̄i)
will pay off. Since the buyer doesn’t buy (n̄i ∧ Q) (by the
above constraint), and all the other securities pay the same
or less when ni is made false, we can assume without loss of
generality that the adversary sets ni to be false. Similarly,
if the buyer buys (n̄i ∧ Q), then the adversary must set
ni and zi to be true, and we can assume without loss of
generality that the adversary sets xi to be false. Note that
the adversary must in all cases set each zi event to be true.

Summarizing the preceding argument, there is an exact
correspondence between the rational strategies of the buyer
and settings for the xi variables forced on the adversary.
Furthermore, the adversary is also constrained to set the
variables Q, z1, . . . , zn to be true, and without loss of gen-
erality may be assumed to set ni = x̄i. Under these con-
straints, those securities not corresponding to clauses in φ
are guaranteed to not pay off.

The adversary also decides the value of the y1, . . . , ym
base events. Recall that for each clause C ∈ φ there is a
corresponding security SC. Given that zi is true and ni = x̄i
(without loss of generality), it follows from the construction
of SC that the setting of the yis causes SC to pay off iff it
satisfies C. This establishes the reduction from T∃∀BF to
the matching problem, when the securities are constrained
to be a conjunction of polynomially many base events or
their negations.

5.4.2 Reducing to 3-variable conjunctions
There are standard methods for reducing DNF formulae to

3-DNF formulae, which are trivially modifiable to our secu-
rities framework; we include the reduction for completeness.
Given a security S whose payoff clause is

C = (v1 ∧ v2 ∧ · · · ∧ vk)

(variable negations are irrelevant to this discussion), cost
c and payoff p, introduce a new auxiliary variable, w, and
replace the security with two securities, S1 and S2, with
payoff clauses,

C1 = (v1 ∧ v2 ∧ w) and

C2 = (w̄ ∧ v3 ∧ · · · ∧ vk).

The securities both have payoff p, and their costs can be
any positive values that sum to c. Note that at most one of
the securities can pay off at a time. If only one security is
bought, then the adversary can always set w so that it won’t

pay off; hence the auctioneer will buy either both or neither,
for a total cost of c (here we use the fact that one is only
allowed to buy either 0 or 1 shares of each security). Then,
it may be verified that, given the ability to set w arbitrarily,
the adversary can cause C to be unsatisfied iff it can cause
both C1 and C2 to be unsatisfied. Hence, owning one share
each of S1 and S2 is equivalent to owning one share of S.

Note that C1 has three variables and C2 has k−1 variables.
By applying the transformation successively, one obtains an
equivalent set of securities, of polynomial size, whose payoff
clauses have at most 3 variables.

We note that in the basic construction, all of the clauses
with more than 3 variables are associated with cheap secu-
rities (cost ε). Instead of subdividing costs, we can simply
make all of the resulting securities have cost ε; the con-
straints on C and ε must reflect the new, larger number of
cheap securities.

One can ensure that all of the payoff clauses have exactly
3 variables, with a similar construction. A security S with
cost c, payoff p and defining clause (x ∧ y) can be replaced
by securities S1 and S2 with cost c/2, payoff p and defining
clauses (x∧y∧w) and (x∧y∧w̄), where w is a new auxiliary
variable. Essentially the same analysis as given above ap-
plies to this case. The case of single-variable payoff clauses
is handled by two applications of this technique.

5.4.3 Reducing to equi-cost securities
By setting C and ε appropriately, one can ensure that

in the basic reduction every security costs a polynomially
bounded integer multiple of ε; call this ratio r. We now
show how to reduce this case to the case where every se-
curity costs ε. Recall that the expensive securities have
payoff clauses (x̄i ∧ Q) or (n̄i ∧ Q). Assume that secu-
rity S has payoff clause (x̄i ∧Q) (the other case is handled
identically). Replace S with security S′, with payoff clause
(x̄i ∧ Q ∧ w1) (w1, . . . , wr−1 are auxiliary variables; fresh
variables are chosen for each clause), and also S1, . . . , Sr−1,
with payoff clauses

(w̄1 ∧ w2), (w̄2 ∧ w3), . . . , (w̄r−2 ∧ wr−1), and(w̄r−1 ∧ w̄1).

Clearly, buying none of the new securities is equivalent
to not buying the original security. We show that buying
all of the new securities is equivalent to buying the original
security, and that buying a proper, nonempty subset of the
securities is irrational.

We first note that if the buyer buys securities S1, . . . , Sr−1,
then the adversary must set w1 to be true, or one of the
securities will pay off. To see this, note that if wi is set to
false, then (w̄i∧wi+1) will be true unless wi+1 is set to false;
thus, setting w1 to false forces the adversary to set wr−1 to
false, causing the final clause to be true. Having set w1

true, the adversary can set w2, . . . , wr−1 to false, ensuring
that none of the securities S1, . . . , Sr−1 pays out. If wi is
true, then (x̄i ∧Q∧w1) is equivalent to (x̄i ∧Q). So buying
all of the replacement securities for ε each is equivalent to
buying the original security for εr.

It remains to show that buying a proper, nonempty sub-
set of the securities is irrational. If one doesn’t buy S′,
then the adversary can set the w variables so that none of
S1, . . . , Sr−1 will pay off; any money spent on these securi-
ties is wasted. If one doesn’t buy Sr−1, the adversary can
set all w to false, in which case none of the new clauses will
pay off, regardless of the value of xi and Q. Similarly, if one



doesn’t buy Si, for 1 ≤ i ≤ r−2, the adversary can set wi+1

to be true, all the other w variables to be false, and again
there is no payoff, regardless of the value of xi and Q. Thus,
buying a proper subset of these securities will not increase
ones payoff.

We note that this reduction can be combined trivially with
the reduction that ensures that all of the defining clauses
have 3 or fewer variables. With a slightly messier argument,
all of the defining clauses can be set up to have exactly 3
variables.

5.4.4 Reducing to clauses of at most 2 variables
If we allow securities to have variable payoffs and prices,

we can reduce to the case where each security’s payoff clause
is a conjunction of at most 2 variables or their negations.

Given a security s with payoff clause (X ∧ Y ∧ Z), cost c
and payoff 1, we introduce fresh auxiliary variables, w1, w2

and w3 (new variables are used for each clause) and replace
S with the following securities:

• Securities S1, S2 and S3, each with cost c/3 and payoff
1, with respective payoff clauses (X ∧ w1), (Y ∧ w2)
and (Z ∧ w3).

• Securities S′
1, . . . , S

′
6, each with cost 4 and payoff 24−

ε2, with payoff clauses,

(w1 ∧ w2) (w1 ∧ w3) (w2 ∧ w3)
(w̄1 ∧ w̄2) (w̄1 ∧ w̄3) (w̄2 ∧ w̄3)

Here, ε2 is a tiny positive quantity, described later. By a
simple case analysis, we have the following.

Observations:

1. For any i, there exists a setting of w1, w2 an w3 such
that of the S′ securities only S′

i pays off.

2. For any setting of w1, w2 and w3, at least one of the
S′ securities will pay off.

3. If w1, w2 and w3 are all false, all of the S′ securities
will pay off.

4. Setting one of w1, w2 or w3 to be true, and the others
to be 0, will cause exactly one of the S′ securities to
pay off.

By Observation 1, there is no point in buying a nonempty
proper subset of the S′ securities: The adversary can ensure
that none of the bought securities will pay off, and even if
all the S securities pay off, it will not be sufficient to recoup
the cost of buying a single S′ security. By Observation 2, if
one buys all the S′ securities, one is guaranteed to almost
make back ones investment (except for ε2), in which case by
Observations 3 and 4, the adversaries optimal strategy is to
make exactly one of w1, w2 or w3 true. We set C, ε and ε2
so that

Cn + ε(|cheap securities|) + ε2(|clauses|) < 1.

Thus, the accumulated losses of ε2 can never spell the dif-
ference between making a guaranteed profit and making no
profit at all. Note also that by making ε2 positive we prevent
the existence of “break-even” buying strategies in which the
buyer only purchases S′ securities.

Summarizing the previous argument, we may assume with-
out loss of generality that the buyer buys all of the S′ secu-
rities (for all clauses), and that for each clause the adversary
sets exactly one of that clause’s auxiliary variables w1, w2 or
w3 to be true. For the rest of the discussion, we assume that
the players follow these constraints.

We next claim that a rational buyer will either buy all
of S1, S2 or S3, or none of them. If the buyer doesn’t buy
S1, then if the adversary makes w1 true and w2 and w3

false, neither S2 nor S3 will pay off, regardless of how the
adversary sets X, Y and Z. Hence, there is no point in
buying either S2 or S3 if one doesn’t buy S1. Applying the
same argument to S2 and S3 establishes the claim.

Clearly, buying none of S1, S2 and S3 has, up to negligible
ε2 factors, the same price/payoff behavior as not buying S.
We next argue that, subject to the established constraints
put on the players’ behaviors, buying all of S1, S2 and S3 has
the same price/payoff behavior (again ignoring ε2 factors) as
buying S, regardless of how the adversary sets X,Y and Z.
First, in both cases, the cost is c. If the adversary makes
X,Y and Z true, then S pays off 1, and (assuming that
exactly one of w1, w2 and w3 is true), exactly one of S1, S2

or S3 will pay off 1. If X is false, then S doesn’t pay off,
and the adversary can set w1 true (and w2 and w3 false),
ensuring that none of S1, S2 and S3 pays off. The same
argument holds if Y or Z are false.

6. TRACTABLE CASES
The logical question to ask in light of these complexity re-

sults is whether further, more severe restrictions on the space
of securities can enable tractable matching algorithms. Al-
though we have not systematically explored the possibilities,
the potential for useful tractable cases certainly exists.

Suppose, for example, that bids are limited to unit quan-
tities of securities of the following two forms:

1. Disjunctions of positive events: 〈A1 ∨ · · · ∨Ak〉.

2. Single negative events: 〈Āi〉.

Let p be the price offered for a disjunction 〈A1 ∨ · · · ∨ Ak〉,
and qi the maximal price offered for the respective negated
disjuncts. This disjunction bid is part of a match iff p +
P

i
qi ≥ k. Evaluating whether this condition is satisfied by

a subset of bids is quite straightforward.
Although this example is contrived, its application is not

entirely implausible. For example, the disjunctions may cor-
respond to insurance customers, who want an insurance con-
tract to cover all the potential causes of their asset loss. The
atomic securities are sold by insurers, each of whom special-
ize in a different form of disaster cause.

7. CONCLUSIONS AND
FUTURE DIRECTIONS

We have analyzed the computational complexity of match-
ing for securities based on logical formulas. Many possible
avenues for future work exist, including

1. Analyzing the agents’ optimization problem:

• How to choose quantities and bid/ask prices for
a collection of securities to maximizes one’s ex-
pected utility, both for linear and nonlinear utility
functions.



• How to choose securities; that is, deciding on
what collection of boolean formulas to offer to
trade, subject to constraints or penalties on the
number or complexity of bids.

• How do make the above choices in a game theoret-
ically sound way, taking into account the choices
of other traders, their reasoning about other traders,
etc.

2. Although matching is likely intractable, are there good
heuristics that achieve matches in many cases or ap-
proximate a matching?

3. Exploring sharing rules for dividing the surplus, and
incentive properties of the resulting mechanisms.

4. We may consider a market to be in computational equi-
librium if no computationally-bounded player can find
a strategy that increases utility. With few exceptions
[3, 22], little is known about computational equilib-
riums. A natural question is to determine whether a
market can achieve a computational equilibrium that is
not a true equilibrium, and under what circumstances
this may occur.
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