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Abstract

Users looking for documents within specific cat-
egories may have a difficult time locating valuable
documents using general purpose search engines.
We present an automated method for learning query
modifications that can dramatically improve preci-
sion for locating pages within specified categories
using web search engines. We also present a clas-
sification procedure that can recognize pages in a
specific category with high precision, using textual
content, text location, and HTML structure. Evalu-
ation shows that the approach is highly effective for
locating personal homepages and calls for papers.
These algorithms are used to improve category spe-
cific search in the Inquirus 2 search engine.
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Typical web search engines index millions of

pages across a variety of categories, and return re-
sults ranked by expected topical relevance. Only a
small percentage of these pages may be of a specific
category, for example, personal homepages, or calls
for papers. A user may examine large numbers of
pages about the right topic, but not of the desired cat-
egory. In this paper, we describe a methodology for
category-specific web search. We use a classifier to
recognize web pages of a specific category and learn
modifications to queries that bias results toward doc-
uments in that category. Using this approach, we
have developed metasearch tools to effectively re-
trieve documents in several categories, including per-
sonal homepages, calls for papers, research papers,
product reviews, and guide or FAQ documents.

For a specific category, our first step is to train a
support vector machine (SVM) [16] to classify pages
by membership in the desired category. Performance
is improved by considering, in addition to words and
phrases, the documents’ HTML structure and simple
word location information (e.g., whether a word ap-
pears near the top of the document).

Second, we learn a set of query modifications. For
this experiment, a query modification is a set of extra
words or phrases added to a user query to increase
the likelihood that results of the desired category are
ranked near the top.1 Since not all search engines
respond the same way to modifications, we use our
classifier to automatically evaluate the results from
each search engine, and produce a ranking of search
engine and query modification pairs. This approach
compensates for differences between performance on
the training set and the search engine, which has a
larger database and unknown ordering policy.

 ���!#"��%$'&������(�)�

The primary tools used for locating materials on
the web are search engines that strive to be com-
prehensive by indexing a large subset of the web
(the most comprehensive is estimated to cover about
16%) [14]. In addition to general-purpose search
engines, there are special-purpose search engines,
metasearch engines, focused crawlers [4, 5], and ad-
vanced tools designed to help users find materials on
the web.

1Our system supports field based modifications, such as
a constraint on the URL or anchortext.



2.1: Web Search

A typical search engine takes as input a user’s
query and returns results believed to be topically rele-
vant. An alternate approach allows the user to browse
a subject hierarchy. Subject hierarchies are typically
created by humans and often have much lower cov-
erage than major general-purpose search engines.

The search engine Northern Light has an approach
called “custom folders” that organizes search results
into categories. Although results may be organized
into clusters, if the desired category is not one of the
fixed choices, the user must still manually filter re-
sults. Northern Light currently allows users to spec-
ify 31 different categories prior to searching. North-
ern Light does not distribute its algorithm for cluster-
ing, so a user is unable to evaluate results from other
search engines using the same rules.

One limitation of a general-purpose search engine
is the relatively low coverage of the entire web. One
approach for improving coverage is to combine re-
sults from multiple search engines in a metasearch
engine. A metasearch engine could increase cover-
age to as much as 42% of the web in February 1999
[14]. Some popular metasearch engines include Ask
Jeeves, DogPile, SavvySearch [10], MetaCrawler
[18], and ProFusion [7].

A typical metasearch engine considers only the ti-
tles, summaries and URLs of search results, limiting
the ability to assess relevance or predict the category
of a result. A content-based metasearch engine, such
as Inquirus [13], downloads all results and considers
the full text and HTML of documents when making
relevance judgments (this approach can easily be ex-
tended to non-textual information).

A second improvement to metasearch engines is
source selection, based on the user’s desired category.
Some metasearch engines such as SavvySearch [10],
and ProFusion [7] consider, among other factors,
the user’s subject or category when choosing which
search engines to use. Choosing specific sources may
improve precision, but may exclude general-purpose
search engines that contain valuable results.

To further improve the user’s ability to find rele-
vant documents in a specific category, Inquirus has
been extended to a preference-based metasearch en-
gine, Inquirus 2 [8]. Inquirus 2 adds the ability to per-
form both source selection and query modification, as
shown in Figure 1. The category-specific knowledge
used by Inquirus 2 (sources, query modifications, and
the classifiers) was learned using the procedures de-
scribed in this paper. Our procedure automates the
process of choosing sources and query modifications
that are likely to yield results both topically relevant

Figure 1. The Inquirus 2 metasearch engine im-
proves web search by considering more than just the
query when making search decisions.

and of the desired category. In addition, the classifier
can be used to better predict the value to the user.

2.2: Query Modification

Query modification is not a new concept. For
years, a process called query reformulation or rel-
evance feedback has been used to enhance the pre-
cision of search systems. In query modification the
query used internally is different from the one sub-
mitted by the user. Modifications include chang-
ing terms (or making phrases), removing terms, or
adding extra terms. The goal is an internal query
that is more representative of the user’s intent, given
knowledge about the contents of the database. A
simple example is a user typing in Michael Jor-

dan. If the user is looking for sports-related results, a
better query might be Michael Jordan and bas-

ketball, helping to reduce the chance of a docu-
ment being returned about the country of Jordan, or
a different Michael Jordan.

Mitra et al. [15] describe an automatic approach
to discover extra query terms that can improve search
precision. Their basic algorithm, like other relevance
feedback algorithms, retrieves an initial set of possi-
bly relevant documents, and discovers correlated fea-
tures to be used to expand the query. Unlike other
algorithms, they attempt to focus on the “most rele-
vant” results, as opposed to using the entire set. By
considering results more consistent with the user’s
original query, a more effective query modification
can be generated. Their work assumes that the user
is concerned only with topical relevance, and does
not have a specific category need (that is not present
in the query).

Other related work includes the Watson project
[2], an integrated metasearch tool that modifies
queries to general purpose search engines with the
goal of returning results related to a document that
the user is viewing or editing.
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2.3: SVMs and Web Page Classification

Categorizing web pages is a well researched prob-
lem. We choose to use an SVM classifier [20] be-
cause it is resistant to overfitting, can handle large
dimensionality, and has been shown to be highly ef-
fective when compared to other methods for text clas-
sification [11, 12]. A brief description of SVMs fol-
lows.

Consider a set of data points,
�����

����� � � �
	�	�	������ ��� ��� � , such that
���

is an input and � � is a tar-
get output. An SVM is calculated as a weighted sum
of kernel function outputs. The kernel function of an
SVM is written as � ����� � ����� and it can be an inner
product, Gaussian, polynomial, or any other function
that obeys Mercer’s condition.

In the case of classification, the output of an SVM
is defined as:

����� ��!#"#$&%' ( )+*�,
(�-.(�/ ��� ( �0�1"32 -.4 5 (1)

The objective function (which should be minimized)
is:

6 ��!7"1$98: %' ( );* %' < )+* ,
(
,
<�-.(�-=</ ��� ( �0� < "+> %' ( )+*

-.( �
(2)

subject to the box constraint ?A@CB � @ED �GF � and
the linear constraint H ��JI

� � � B �LK ?3M7D is a user-
defined constant that represents a balance between
the model complexity and the approximation error.
Equation 2 will always have a single minimum with
respect to the Lagrange multipliers, N . The mini-
mum to Equation 2 can be found with any of a fam-
ily of algorithms, all of which are based on con-
strained quadratic programming. We used a varia-
tion of Platt’s Sequential Minimal Optimization al-
gorithm [16, 17] in all of our experiments.

When Equation 2 is minimal, Equation 1 will
have a classification margin that is maximized for
the training set. For the case of a linear kernel func-
tion ( � ����� � �7OP� K � � 	 �7O ), an SVM finds a decision
boundary that is balanced between the class bound-
aries of the two classes. In the nonlinear case, the
margin of the classifier is maximized in the kernel
function space, which results in a nonlinear classifi-
cation boundary.

Some research has focused on using hyperlinks, in
addition to text and HTML, as a means of clustering
or classifying web pages [3, 6]. Our work assumes
the need to determine the class of a page based solely
on its raw contents, without access to the inbound
link information.

QUIP( Q , R , S 6 , T , U )
INPUT: Training examples Q (pos) and R (neg)

Set of search engines S 6 , test queries T
The number of results to consider U

OUTPUT: Ranked list of search engine,
query modification tuples V�WYX �GZ�[]\

1. Generate set of features ^ from Q and R
2. Using ^ train SVM classifier
3. ^`_ is the top 100 features from ^
4. Select set of possible query modifications,T`a $ V�^`_ \�b V^`_dc
^`_ \
5. Remove duplicate or redundant modifications
6. T`afe $ PRE-PROCESS-QMOD

� T`a � Q � R "
7. The set of tested modifications T`afe ehgiT`aje
8. return SCORE-TUPLES

� T`afe e � S 6 � T � U "
Table 1. QUery modification Inference Procedure.k'�ml ����� n �����1n

Table 1 shows our main algorithm, QUERY MOD-
IFICATION INFERENCE PROCEDURE (QUIP). This
algorithm first trains an SVM classifier on labeled
data. The algorithm then automatically generates a
set of good query modifications, ranked by expected
recall. Finally, using the learned classifier to evaluate
the query modifications on real search engines, a rank
ordering of query modification, search engine tuples
is produced. The classifier and the tuples are incor-
porated into Inquirus 2 to improve category-specific
web search.

3.1: Training the Classifier

First we train a binary classifier to accurately rec-
ognize positive examples of a category with a low
false-positive rate. To train the classifier, it is nec-
essary to convert training documents into binary fea-
ture vectors, which requires choosing a set of reason-
able features. Even though an SVM classifier may
be able to handle thousands of features, adding fea-
tures of low value could reduce the generalizability
of the classifier. Thus, dimensionality reduction is
performed on the initial feature set.

Unlike typical text classifiers, we consider words,
phrases and underlying HTML structure, as well as
limited text location information. A document that
says “home page” in bold is different from one that
mentions it in anchor text, or in the last sentence of
the document. We also added special features to cap-
ture non-textual concepts, such as a URL correspond-
ing to a personal directory. Table 2 describes the rep-
resentation of document features.

3.1.1 Initial Dimensionality Reduction

Rare words and very frequent words are less likely
to be useful for a classifier. We perform a two step

3



Code Description
T Title word or phrase
TS Occurs in first 75 terms of the document
F Occurs anywhere in full-text (except title)
E Occurs in a heading, or is emphasized
UP Word or special character (tilde) occurs in the

URL path
UF Word or special character occurs in the file

name portion of the URL
A Occurs in the anchortext
S Special symbol – Captures non-textual con-

cepts, such as personal directory, top of tree,
name in title

Table 2. Document vector types used

process to reduce the number of features to a user
specified level.

First, we remove all features that do not occur in
a specified percentage of documents. A feature

�
is

removed if it occurs in less than the required percent-
age (threshold) of both the positive and negative sets,
i.e., ��� � � � ��� ���
	����� and

��� � � � ��� ����	������
Where:� Q : the set of positive examples.� R : the set of negative examples.� Q�� : documents in Q that contain feature

�
.� R�� : documents in R that contain feature

�
.��� �

: threshold for positive features.���"!
: threshold for negative features.

Second, we rank the remaining features based on en-
tropy loss. No stop word lists are used.

3.1.2: Expected Entropy Loss

Entropy is computed independently for each fea-
ture. Let D be the event indicating whether the doc-
ument is a member of the specified category (e.g.,
whether the document is a personal homepage). Let�

denote the event that the document contains the
specified feature (e.g., contains “my” in the title).
The prior entropy of the class distribution is #%$&('�) � D �
*,+ '�) � D � &-'�) � D �
*.+ '/) � D � . The posterior
entropy of the class when the feature is present is# � $ &('�) � D � � �
*.+ '/) � D � � � &0'/) � D � � �
*.+ '/) � D � � � ;
likewise, the posterior entropy of the class when the
feature is absent is # � $ &('�) � D � � �
*,+ '�) � D � � � &'�) � D � � �
*,+ '�) � D � � � . Thus, the expected posterior
entropy is # � '/) � � ��1 # � '/) � � � , and the expected en-
tropy loss is

# &32 # � '/) � � ��1 # � '�) � � �54 M

If any of the probabilities are zero, we use a fixed
value. Expected entropy loss is synonymous with ex-
pected information gain, and is always nonnegative
[1].

All features meeting the threshold are sorted by
expected entropy loss to provide an approximation
of the usefulness of the individual feature. This ap-
proach assigns low scores to features that, although
common in both sets, are unlikely to be useful for a
binary classifier.

3.2: Choosing Query Modifications

Like the work of Mitra [15], the goal of our query
modification is to identify features that could en-
hance the precision of a query. Unlike their work,
we have extra information regarding the user’s intent
in the form of labelled data. The labelled data de-
fines a category, and the learned modifications can be
re-applied for different topical queries that fall in the
same category without any re-learning.

Once the training set has been converted to binary
feature vectors, we generate a set of query modifica-
tions. Our features may be non-textual, or on fields
not usable by every search engine, such as anchor-
text, or the URL. In this paper, we only used features
that occurred in the full text or the top 75 words.

To generate the ranked list of possible query mod-
ifications, we score all possible query modifications
by expected recall. We define 687 to be the set of
query modifications, or all combinations of one or
two features. A user parameter, P, is the desired min-
imum precision. To compute the precision, we must
consider the a priori probability that a random result
from a search engine is in the desired category, as
opposed to the probability that a random document
from the training set is in the positive set. To com-
pensate for the difference between the a priori prob-
ability and the distribution in the training set, we add
a parameter 9 , defined below. Table 3 shows our al-
gorithm for ranking the query modifications.

Consider the following definitions:��:<;
: Set of all possible query modifications for

consideration,� Z�[
: A single query modification, comprised of a

set of one or more features:
Z�[ $ V � * ���>=�� 5 5 5 �@? \ ,� QBA5C : the set of documents from Q , the positive set,

that contain all the features in
Z�[

,� R A5C : the set of documents from R , the negative set,
that contain all the features in

Z�[
,�0D

: factor to compensate for a priori probability of
the class: E �GF "#$ H I�HH I�H ��J H K�H ,��L

: User provided parameter for minimum desired
precision.
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PRE-PROCESS-QMOD(

:<;
, Q , R )

INPUT:

:/;
, Q , R

OUTPUT: A ranked list of all
Z�[ �

:<;
1. foreach

Z�[ �
:/;

2. Compute predicted precision:� e � Z�[]"1$ H I���� HH I���� H ��J H K���� H
3. if

� e � Z�[ "
	 L
4. S������X � Z�[ "#$��
5. else
6. S������X � Z�[ "#$ H I���� HH I�H
7. end foreach
8. return all

Z�[ �
:/;

sorted by S������PX � Z�[]"
Table 3. Initial ranking of the query modifications.

The algorithm PRE-PROCESS-QMOD returns a
ranked list (by expected recall) for each query modifi-
cation that meets the specified precision level, P. We
can measure precision on the web, but cannot mea-
sure recall without having knowledge of all possible
results and their classification. Typical query modifi-
cation approaches strive to maximize precision; how-
ever, a query modification may overly constrain the
results causing very high precision, but very low re-
call. As a result, we feel that ranking query modifica-
tions by expected recall is more desirable, as long as
they have at least some minimum precision require-
ment. If a user is searching for a specific page in
some category, say an individual’s homepage, as op-
posed to a set of homepages of people who have a
particular interest, low recall can make it very likely
the desired page is never found [9, 19]. In general,
there is an inverse relation between precision and re-
call. Our approach allows the user to control this bal-
ance by choosing the minimum precision level.

3.3: Scoring Query Modifications and Engines

Not all search engines respond the same way to a
query modification, or contain the same distribution
of documents. One user may be looking for home-
pages of persons who work for a company, while an-
other might be looking for homepages of people who
own a Ford truck; in each case, the best query modi-
fication and search engine may be different. To rank
the search engine, query modification tuples, we use
representative test queries and apply the classifier to
the results. Table 4 shows a simple algorithm that
can rank a set of search engines and query modifi-
cations starting with a set of sample queries. The
ranking is based on the number of valid documents
returned that are classified as true by the learned clas-

SCORE-TUPLES( T a , S 6 , T , U )
INPUT: List of search engines and query

modifications to test, test queries, T ,
a parameter U

OUTPUT: A ranked list of all
	 Z�[ � WYX��

1. foreach
Z�[ � T`a

2. foreach WX � S 6
3. S������PX A5C�� ��� $ EVAL-TUPLE

� Z�[ � WYX � T � U "
4. end foreach
5. end foreach
6. return all

	 Z�[ � WX�� in T`a � S 6 ,
sorted by S������PX A5C�� ���

EVAL-TUPLE(
Z�[

, WYX , T , U )
INPUT: Query modification

Z�[
, search engine WX ,

test queries T , U
OUTPUT: Relative score for the tuple

	 Z�[ � WYX��
1. INITALIZE W�������X $��
2. foreach

Z � T
3. � $

first U result URLs from search engine WX
with query CONCAT

� Z � Z�[ "
4. foreach url � � �
5.  $"!$#�%'&)(*# F�! � � "
7. if  ,+$ U.-�/ AND 0 (�F S1S�1 ^32 �  � � "7$54 ��6 6
8. W������PX $ W������PX 2 8
9. end if
10. end foreach
11. end foreach
12. return W�������X

Table 4. Functions to score each

	
798 ��: #<; pair

for a given classifier and test queries.

sifier.2 In addition, a specified parameter = controls
how many results are considered for each search en-
gine query. Considering too many results may harm
performance, while too few may not accurately cap-
ture the effectiveness of a given tuple.

Thus, we define for training and testing:� T`a e e : Set of query modifications for testing,T`afe e?> :<; ,�
 : A single web page

	 �@��/ �BADC [ /?� ,� WYX : A search engine, WYX � S 6 , all search engines,� Z
: A query to be submitted to a search engine, T is

the set of test queries,�
 $E!$#�%'&)(*# F�! � � " : Downloads page  cor-
responding to URL � , if there is an error then  is
defined as U.-�/ ,�
0 ( F S1S�1 ^32 �  � � " : Function which returns true
if page  at URL � is of the desired category.

Although the algorithm could compute scores for
hundreds of test queries and tens of thousands of pos-

2The learned classifier considers many features, in ad-
dition to words and phrases, reducing the chance that a sin-
gle feature causes a page to always classify as true. In ad-
dition, SVMs are designed not to overfit, further reducing
the chance of a single or small set of features dominating.
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# Feature # QMOD R
1 S.personalDIR 1 my + welcome 25%
2 TS.my 2 my + welcome to 20%
3 UF./ 3 my + i am 14%
4 T.s 4 my + m 14%
5 F.my 5 my + home page 14%
6 T.page 6 my + am 13%

Table 5. (left) Top six features for personal home-
pages. (right) Top eight query modifications, before
evaluation, with predicted recall.

sible query modifications, we caution against running
it on a large set, so as to avoid sending large numbers
of queries to the search engines. To further reduce the
burden on each search engine, we ran the algorithm
serially, alternating search engines between each re-
quest. For our experiments, we choose

����� �
to be a

relatively small subset of the set of all ranked query
modifications, plus the query with no modification,
and at least one “naive” modification for comparison.

� ��� n	����
 ���
To test our approach, we chose two categories:

personal homepages and calls for papers. In each,
we assumed that the user started with a subject and
wished to find a set of pages in the desired category,
as opposed to a signle specific page. For each case
we started with a dataset of positive and negative ex-
amples, 2,618 and 2,703 pages for personal home-
pages and calls for papers, respectively. The initial
dataset was split into a training and test set, an SVM
was trained, and evaluated. There was no overlap
between the URLs in the training and test sets. We
then generated a ranked list of query modifications,
of which several were evaluated using the algorithm
in Table 4.

The classifiers performed well: the false-positive
rate was low, less than 2% for both personal home-
pages and calls for papers. In addition, for each cat-
egory, several highly effective query modifications
that performed better than the naive modifications
were discovered.

4.1: Personal Homepages

A personal homepage is a difficult concept to de-
fine objectively. The definition we used is a page
made by an individual (or family) in an individual
role, with the intent of being the entry point for infor-
mation about the person (or family). It is possible a
person may have more than one personal homepage,
and it is also acceptable for a person to dedicate their
homepage to an interest and or hobby, but not to cor-
porate endeavors. Pages that were manual redirects

Gaussian classifier

0

5

10

15

20

25

30

35

40

45

50

[-i
nf

 --
 -2

.7
]

[-2
.4

 --
 -2

.1
]

[-1
.8

 --
 -1

.5
]

[-1
.2

 --
 -0

.9
]

[-0
.6

 --
 -0

.3
]

[0
 --

 0
.3

]

[0
.6

 --
 0

.9
]

[1
.2

 --
 1

.5
]

[1
.8

 --
 2

.1
]

[2
.4

 --
 2

.7
]

Score range

P
er

ce
n

t 
o

f 
d

o
cu

m
en

ts

CFP neg

CFP pos

HP neg

HP pos

Figure 2. The distribution of scores from the SVM
for test data for personal homepages and calls for pa-
pers.

or entry pages (pages that had only an image and a
small amount of text) were removed.

We started with a set of 718 positive and 1,900
negative examples. The positive list was created by
classifying pages from many sources, including the
Personal Home Page list on Yahoo,3 several Univer-
sity and research sites, and several ISP sites that of-
fered personal homepages, as well as a few that were
gathered from friends and colleagues. The negative
examples were from pages selected from the logs of
Inquirus 2. A first pass of the algorithm was run to
generate a classifier that was applied to the negative
set to identify possible false-negatives, which were
manually checked and removed if positive.

The training set was created by choosing about
350 positive URLs at random, removing several
pages from GeoCities to prevent biasing the classi-
fier on the GeoCities URL, resulting in 327 positive
examples. 1,500 negative pages were randomly se-
lected for the training set. The remaining 391 posi-
tive and 400 negative examples were used in the test
set.

4.1.1: Classifier

The parameters for the dimensionality reduction
were a threshold of 7.5% for both the positive and
negative features, and of the 1,061 features meeting
the threshold the top 400 were kept, as ranked by ex-
pected entropy loss ( 9 was set to 25). Table 5 shows
the top six features as ranked by entropy loss and the
top six query modifications as ranked by the algo-

3It should be noted that the majority of pages on this
list resulted in either server or network errors, or were not
personal homepages.
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Rank Query Mod Search
Eng

Prec

1 my ”home page” FAST 64.5%
2 +”my name is” AV 57.5%
3 ”s home” Google 54.5%
4 +my +”i am” AV 52%
5 +”s home” AV 52%
10 ”my name is” FAST 39.5%
11 +my +”home page” AV 38.5%
27 ”my name +is” Google 6.5%
- no mod AV 8%
- no mod Google 6%
- no mod FAST 3.5%

Table 6. Summarized results for the query modifi-
cations as applied to several search engines.

rithm in Table 3 with a minimum precision require-
ment of 25%.

To test the classifier, we applied it to the test set,
and to several other sources of positive and negative
examples. On four different categories in the open di-
rectory, the classifier had over 96% accuracy with no
personal homepages in thetest set. On several lists of
personal homepages from Universities, only two out
of 127 were misclassified. The overall accuracy for
the test set, using the Gaussian kernel, was 88.4% and
98% for the positive and negative sets, respectively.
The classifier was also tested on the calls-for-papers
training set with 99.2% overall accuracy.

4.1.2: Query Modifications

We generated and tested several query modifica-
tions as described by the algorithms in Tables 3 and
4. Table 5 (right) lists the top six query modifica-
tions and their predicted recall. To test the query
modifications, we chose three search engines: Al-
taVista, FAST (AllTheWeb), and Google. We chose
four test queries: chess, "ballroom dancing,"

beagles, and cat. We tested nine query modifi-
cations: my welcome, my "welcome to", my "i

am", my "home page", "s home", "home page",
my name is, i resume. Table 6 shows the preci-
sion of the 200 possible results (50 for each query).

Table 6 shows clearly the wide variation among
search engines for the same queries and query modi-
fications. The query modification4 "my name is"

worked very well for AltaVista, very poorly for
Google, and in the middle for FAST. However,
the query modification my & "home page" worked
well for FAST, but performed significantly worse for
AltaVista.

4The correct syntax for Google, i.e. adding pluses to
stop words, was always used when generating query mod-
ifications.

With no modification, the best performer was
AltaVista returning only 8% of the results as per-
sonal home pages. For the the naive modification of
"home page," Google performed best with 28.5%
precision, FAST had 15.5% precision and AltaVista
had 8.5% precision. All three were worse than
the highly ranked learned modifications, my "home

page", "my name is", and "s home", each with
over 50% precision.

We note that ranking of query modifications is de-
pendant on the choice of test queries, i.e., different
sets of test queries may produce different rankings of
query modifications and search engines.

4.2: Calls For Papers

A good call for papers typically contains a title
describing the event, a list of topics, a program com-
mittee, deadlines and submission information. We
obtained a list of possible CFP’s by combining URLs
from lists of many CFPs and results from multiple
search engines for a variety of queries likely to yield
conference-related pages.

We started with a set of 432 manually classified
calls for papers, and 2,269 negative examples, con-
sisting of several “random” URLs from the Inquirus
2 logs, and about 850 conference related pages. The
training set consisted of 249 positive and 1,250 neg-
ative pages (randomly selected, and with a limit of
20 pages from any one domain). The remaining 183
positive and 1,019 negative examples formed the test
set.

4.2.1: Classifier

The parameters for dimensionality reduction were
thresholds of 7.5% for both positive and negative fea-
tures. Of the 2,868 features meeting the threshold,
the top 750 were kept by expected entropy loss ( 9
was set to 25). The top-ranked features, all occuring
in the full-text were: "for papers", "call for

papers", "papers", and "submission". The fea-
ture "call for papers" occuring in the top sev-
enty five terms was also in the top five.

To test the SVM classifier, we applied it to the test
set, to the set of known personal homepages, and to
several other negative sets. For the test set, with the
Gaussian kernel the accuracy was 100% and 98.6%
for positive and negative respectively. For the per-
sonal homepages training set, and for the Open Di-
rectory category of AI, accuracy was also 100%. We
also created a second set of 160 positive calls for pa-
pers from several conference sites with an accuracy
of 91.3%. The lower accuracy on the second test set
was likely due to the large number of foreign pages
that appeared to have a different basic structure than
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# Query Mod Search
Eng

%
Prec

1 ”call +for papers” ”+will +be” Google 88%
2 ”call for papers” ”will be” FAST 85%
3 ”call for” authors FAST 83%
4 ”call +for papers” Google 83%
5 ”call +for” authors Google 82%
6 ”for papers” ”will be” FAST 79%
11 +notification +”important dates” AV 75%
13 +”call for papers” +”will be” AV 64%
- no mod Google 2%
- no mod FAST .7%
- no mod AV 0%

Table 7. Results for query modifications for calls
for papers as applied to several search engines.

those in the training set (although all pages contained
some English).

4.2.2: Query Modifications

Just as for personal homepages, after learning
the classifier, we generated and tested several query
modifications as described by the algorithms in Ta-
bles 3 and 4.

The top-ranked query modifications were: "for

papers" & "will be", "call for papers" &

"will be", call & authors, "call for" &

authors, and "call for papers" & not. The
top five query modifications each had roughly 50%
predicted recall. We used a minimum precision
requirement of 40%. To test the query modifica-
tions, we chose three search engines: AltaVista,
FAST (AllTheWeb), and Google. We chose three
test queries: databases, "natural language

processing" and algorithms. We tested six
query modifications, and the the query without mod-
ification. The query modifications were: "for

papers" & "will be", "call for papers" &

"will be", call authors, "call for" & au-

thors, "call for papers", notification &

"important dates". Table 7 shows the precision
of results classified as calls for papers, out of a pos-
sible 150 (50 for each query were retrieved).

The results for query modifications for calls for
papers were more consistent among the three search
engines than for personal homepages, with FAST and
Google having nearly identical scores for each query
modification. As expected, without modification 2%
or fewer of the results were calls for papers. In
this case, however, the naive modification of "call
for papers" performed quite well. Google had the
highest precision for the naive modification of 83%,
FAST had 76% precision, while AltaVista had only
49% precision. In general, the learned modifications
performed better than the highly ranked naive ones.

Of course, if the search engines change their ordering
policy or their databases, these results could change.

����� ����� "���� " �)�	�)� ���)�+n�
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A user with a specific information need category

may find it difficult to locate both relevant and on-
category results from a general-purpose search en-
gine. Here, we present an automated method for
learning search-engine-specific query modifications
that can result in very high precision (and reasonable
expected recall) for personal homepages and calls for
papers. The learned query modifications are shown to
have over 50% precision for personal homepages and
over 80% precision for calls for papers, compared
with the less than 8% and 2% when not using query
modifications. In addition, the classifiers have been
shown to be able to identify positive examples with
about 88% and nearly 100% accuracy for personal
homepages and calls for papers respectively. In both
cases, naive query modifications did not perform as
well as those recommended by our algorithm.

Our classifier is trained on automatically extracted
features that consider words and phrases, as well as
HTML structure, simple locational information, and
other useful features with no textual correspondence.
We implement a simple method for dimensionality
reduction of the large feature space using expected
entropy loss and thresholding. Using the classifier, a
simple method is applied to measure the effectiveness
of query modifications for individual search engines.
Our results indicate that when searching for personal
homepages, the precision of individual search en-
gines varied significantly, even for identical queries.
For calls for papers, the variation was less significant.
This variation is due to either the differences in in-
dividual search engine databases, or their individual
ordering policies.

One of our goals is to explore methods for auto-
matic training set discovery and expansion, such as
boosting, allowing a user to initially provide only
three or four positive training URLs. Such ap-
proaches will enable us to allow users to more easily
generate their own categories for Inquirus 2.
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