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ABSTRACT
We create a statistical model for inferring hierarchical term
relationships about a topic, given only a small set of example
web pages on the topic, without prior knowledge of any hi-
erarchical information. The model can utilize either the full
text of the pages in the cluster or the context of links to the
pages. To support the model, we use “ground truth” data
taken from the category labels in the Open Directory. We
show that the model accurately separates terms in the fol-
lowing classes: self terms describing the cluster, parent terms
describing more general concepts, and child terms describing
specializations of the cluster. For example, for a set of biol-
ogy pages, sample parent, self, and child terms are science,
biology, and genetics respectively. We create an algorithm
to predict parent, self, and child terms using the new model,
and compare the predictions to the ground truth data. The
algorithm accurately ranks a majority of the ground truth
terms highly, and identifies additional complementary terms
missing in the Open Directory.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Linguistic processing

General Terms
Experimentation, Measurement, and Algorithms

Keywords
feature selection, hierarchical relationships, statistical mod-
els, web analysis, cluster naming

1. INTRODUCTION
Starting with a set of documents, it is desirable to infer au-
tomatically various information about that set. Information
such as a meaningful name or some related concepts may
be useful for searching or analysis. This paper presents a
simple model that identifies meaningful classes of features
to promote understanding of a cluster of documents. Our
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Figure 1: A figure showing the predicted relationships

between parent, child and self features. Positive fre-

quency is the percentage of documents in the positive

set that contain a given feature. Collection frequency is

the overall percentage of documents that contain a given

feature.

simple model defines three types of features: self terms that
describe the cluster as a whole, parent terms that describe
more general concepts, and child terms that describe spe-
cializations of the cluster.

Automatic selection of parent, child and self features can
be useful for several purposes including automatic labeling
of web directories or improving information retrieval. An
important use could be for automatically naming generated
clusters, as well as recommending both more general and
more specific concepts, using only the summary statistics of
a single cluster, and background collection statistics. Also,
popular web directories such as Yahoo (http://www.yahoo.
com/) or the Open Directory (http://www.dmoz.org/) are
manually generated and manually maintained. Even if cat-
egories are defined by hand, automatic hierarchical descrip-
tions can be useful to recommend new parent or child links,
or alternate names. The same technology could be useful
to improve information retrieval by recommending alternate
queries (both more general and more specific) based on a re-
trieved set of pages.

1.1 The Model
We hypothesize that we can distinguish between parent, self,
and child features based on analysis of the frequency of a fea-
ture f in a set of documents (the “positive cluster”), com-
pared to the frequency of f in the entire collection. Specif-
ically, if f is very common in the positive cluster, but rela-



tively rare in the collection, then f may be a good self term.
A feature that is common in the positive cluster, but also
somewhat common in the entire collection, is a description
of the positive cluster, but is more general and hence may be
a good parent feature. Features that are somewhat common
in the positive cluster, but very rare in the general collec-
tion, may be good child features because they only describe
a subset of the positive documents.

Figure 1 shows a graphical representation of the model. The
three regions define the predicted relative relationships be-
tween parent, child and self features. Features outside of
the marked regions are considered poor candidates for the
classes of parent, child or self. Figure 1 does not show any
absolute numerical boundaries, only the relative positions
of the regions. The actual regions may be fuzzy or non-
rectangular. The regions depend on the generality of the
class. For example, for the cluster of “biology” the parent
of “science” is relatively common. For a cluster of docu-
ments about “gene sequencing”, a parent of “DNA” may be
more rare than “science”, and hence the boundary between
parent and self would likely be closer to 0.

Figure 2 shows a view of a set of documents that are in the
areas of “science”, “biology”, and “botany”. The outer cir-
cle represents the set of all documents in the subject area
of “science”. The middle circle is the set of documents in
the area of “biology” and the inner-most circle represents
the documents in the area of “botany”. If we assume that
the features “science”, “biology” and “botany” occur only
within their respective circles, and occur in each document
contained within their respective circles, it is easy to see the
parent, child, self relationships. From this figure, roughly
20% of the total documents mention “science”, about 5%
of the documents mention “biology” and about 1% mention
“botany”. Within the set of “biology” documents, 100%
mention both “science” and “biology”, while about 20%
mention “botany”. This is a very simplistic representation,
because we assume that every document in the biology circle
actually contains the word biology – which is not necessarily
the case. Likewise, it is unlikely that all documents in the
sub-category of botany would mention both “biology” and
“science”.

To compensate for this, we assume that there is some prob-
ability a given “appropriate” feature will be used. This
probability is likely less for the parents than for the selfs
or children. As a result, in Figure 1, the parent region ex-
tends more to the left than the self region. The probability
of a given feature being used will also affect the coordinates
of the lower right corner; a lower probability may shift the
percentage of occurrences in the self to the left. A proba-
bility of one would correspond to every positive document
containing all self features.

2. AN EXPERIMENT
To test the model described in Figure 1, we used ground
truth data and known positive documents to generate a
graph of the actual occurrences of parent, self and child
features. We chose the Open Directory (http://www.dmoz.
org/) as our ground truth data for both parent, child and
self terms, as well as for the documents. Using the top level
categories of “computers”, “science” and “sports”, we chose

science

biology

botany

Figure 2: Sample distribution of features for the area

of biology, with parent science, and child botany.

the top 15 subject-based sub-categories from each (science
only had 11 subject-based sub-categories) for a total of 41
categories to form the set of positive clusters. Table 1 lists
the 41 categories, and their parents, used for our experi-
ment. We randomly chose documents from anywhere in the
Open Directory to collect an approximation of the collec-
tion frequency of features. The negative set frequencies of
the parent, children and self features should be similar (be-
tween sub-categories) because all 41 sub-categories are at
a similar depth (with respect to the Open Directory root
node).

Parent Categories
Science Agriculture, Anomalies and Alter-

native Science, Astronomy, Biology,
Chemistry, Earth Sciences, Environ-
ment, Math, Physics, Social Sciences,
Technology

Computers Artificial Intelligence, CAD, Computer
Science, Consultants, Data Commu-
nications, Data Formats, Education,
Graphics, Hardware, Internet, Multi-
media, Programming, Security, Soft-
ware, Systems

Sports Baseball, Basketball, Cycling, Eques-
trian, Football, Golf, Hockey, Martial
Arts, Motorsports, Running, Skiing,
Soccer, Tennis, Track and Field, Wa-
ter Sports

Table 1: The 41 Open Directory categories, and the

three parent categories we used for our experiment.

Each category has an assigned parent (in this case either
science, computers or sports), an associated name, which
formed the self features, and several sub-categories, which
formed the children. In each case, we split the assigned
names on “and”, “or”, or punctuation such as a comma.
So the category of “Anomalies and Alternative Science” be-
comes two selfs, “anomalies” and “alternative science”.
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Figure 3: Distribution of ground truth features from the Open Directory.
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Figure 4: Distribution of ground truth features from the Open Directory, removing the insufficiently defined children,

and changing the parent of “computers” to “computer”.

The first part of the experiment considered an initial set
of 500 random documents from each positive category, and
20,000 random documents from anywhere in the directory
as the negative data (collection statistics). Each of the web
URLs was downloaded and the features were put into a his-
togram. If a URL resulted in a terminal error, the page was
ignored, explaining the variation in the number of positive
documents used for training. Features consisted of words,
or two or three word phrases, with each feature counting a
maximum of once per document.

Then, for each category, we graphed each parent, child and
self feature (as assigned by the Open Directory) with the
X coordinate as the fraction of positive documents contain-
ing the feature, and the Y coordinate as the fraction of the
negative documents containing that feature. If a feature
occurred in less than 2% of the positive set it was ignored.

Figure 3 shows the distribution of all parent, child and self
features from our 41 categories. Although there appears to
be a general trend, there are many children that occur near
the parents. Since there were many categories with the same
parent (only three unique parents), and a common negative
set was used, the parents are co-linear with a common value.

Several of the children are words or phrases that are not well
defined in the absence of knowledge of the category. For ex-
ample, the feature “news” is undefined without knowing the
relevant category; is it news about artificial intelligence, or
news about baseball? Likewise several features, including
news, are not “subjects” but rather a non-textual property
of a page. A volunteer went through the list of categories
and their children, removing any child that was not suf-
ficiently defined in isolation. He removed more than half
of the children. The removal was done prior to seeing any



Category F V Category F V

agriculture 438 67 anomalies and
alternative
science

395 63

artificial intel-
ligence

448 77 astronomy 438 64

baseball 419 62 basketball 418 67
biology 454 66 cad 405 65
chemistry 443 70 computer sci-

ence
346 75

consultants 442 139 cycling 438 65
data commu-
nications

439 65 data formats 434 62

earth sciences 445 70 education 436 67
environment 439 76 equestrian 433 62
football 426 71 golf 441 64
graphics 454 69 hardware 451 67
hockey 411 70 internet 446 74
martial arts 461 61 math 460 69
motorsports 445 64 multimedia 427 64
physics 441 69 programming 446 76
running 436 82 security 426 67
skiing 421 69 soccer 439 73
social sciences 458 71 software 446 73
systems 447 54 technology 439 53
tennis 452 36 track and field 384 60
water sports 451 40

Table 2: The number of positive documents from each

category for the full-text (F) experiment and for the ex-

tended anchortext (V) experiment.

Yahoo!

Google

Yahoo!

Google

Full text Title

...My favorite search
engine is yahoo...

...Search engine
yahoo is powered by
google...

<text> google <text>

Extended anchor text

Anchor text

Links

Figure 5: Extended anchortext refers to the words in

close proximity to an inbound link.

data, and without knowledge of exactly why he was asked
to remove “insufficiently defined” words or phrases.

Analyzing the data suggested that the parent of “comput-
ers” should be replaced by “computer”. Unlike the word
“sports” often found in the plural when used in the general
sense, “computers” is often found in the singular form. For
this experiment, we did not perform any stemming or stop-
word removal, so “computers” and “computer” are different
features. Figure 4 shows the same data as Figure 3 except
with the parent changed from “computers” to “computer”,
and the insufficiently defined children removed. This change
produces a clearer separation between the regions.

2.1 Extended Anchortext
Unfortunately, documents often do not contain the words
that describe their category. In the category of “Multime-

dia” for example, the feature “multimedia” occurred in only
13% of the positive documents. This is due to a combination
of choice of terms by the page authors as well as the fact
that often a main web page has no textual contents, and is
represented by only a “click here to enter” image.

Our model assumes the “documents” are actually descrip-
tions. Rather than use the words on the page itself, we
decided to repeat the experiment using human assigned de-
scriptions of a document in what we call “extended anchort-
ext”, as shown in Figure 5. Our earlier work [3] describes ex-
tended anchortext, and how it produces features more con-
sistent with the “summary” than the full text of documents.
Features found using extended anchortext generated clusters
appear to produce more reasonable names.

Extended anchortext refers to the words that occur near a
link to the target page. Figure 5 shows an example of ex-
tended anchortext. Instead of using the full text, we used
a virtual document composed of up to 15 extended anchor-
texts. Inbound links from Yahoo! or the Open Directory
were excluded. When using virtual documents created by
considering up to 25 words before, after and including the
inbound anchortexts, there is a significant increase in the
usage of self features in the positive set (as compared to
the full-texts). In the category of Multimedia, the feature
“multimedia” occurred in 42% of the positive virtual docu-
ments, as opposed to 13% of the full texts. The occurrence
of the feature “multimedia” in the negative (random) set
was nearly identical for both the full text and the virtual
documents, at around 2%.

Table 2 lists the number of positive virtual documents used
for each category (randomly picked from the 500 used in the
first experiment). We used 743 negative virtual documents
as the negative set. However, the generation of virtual doc-
uments is quite expensive, forcing us to reduce the total
number of pages considered. The improved summarization
ability from virtual documents should allow us to operate
with fewer total documents.

Figure 6 shows the results for all parents, children and selfs
for the extended anchortext. The positive percentages have
in general shifted to the right, as selfs become more clearly
separated from children. Figure 7 shows the results after
removal of the insufficiently defined children and replacing
“computers” with “computer”. Very few data points fall
outside of a simple rectangular region defined around each
class. Even including the insufficiently defined children, the
three regions are well defined.

Despite the fact that most parents, children, and selfs fall
into the shown regions, there are still several factors causing
problems. First, we did not perform any stemming. Some
features may appear in both singular and plural forms, with
one being misclassified. In addition, phrases may occur less
often than their individual terms, making selfs appear falsely
as children, such as the case of “artificial intelligence”, where
it appears as a child due to the relatively low occurrence of
the phrase.
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Figure 6: Distribution of ground truth features from the Open Directory using extended anchortext virtual documents

instead of full-text.
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Figure 7: Distribution of ground truth features from the Open Directory using extended anchortext virtual documents

instead of full-text, with corrections.

3. EXTRACTING HIERARCHICAL DE-
SCRIPTIONS

3.1 Algorithm
Figure 7 shows that graphing of the ground-truth features
from the Open Directory for 41 categories in general follows
the predicted model of Figure 1. However, it does not graph
all features occurring in each category, only those assigned
by The Open Directory. To provide extra support for the
model, we present a simple algorithm that ranks all features
as possible parents, children and selfs, and compare the out-
put with the ground-truth data from the Open Directory.

Predict Parents, Children and Selfs Algorithm

For each feature f from a set of positive features:

1: Assign a label to feature f as follows:

if (f.neg > maxParentNegative){Label=’N’}

elseif (f.neg > maxSelfNegative){Label=’P’}

elseif (f.pos > minSelfPositive){Label=’S’}

elseif ((f.pos < maxChildPositive) and

(f.neg < maxChildNegative)){Label=’C’}

else {Label=’N’}

2: For each label (P,S,C) sort each feature f with that label
by f.pos



Category Parents Selfs Children

agriculture management, sci-
ence

agriculture, agricultural soil, sustainable, crop

anomalies and al-
ternative science

articles, science alternative, ufo, scientific

artificial intelli-
gence

systems, computer artificial, intelligence ai, computational, artificial intelli-
gence

astronomy science, images space, astronomy physics, sky, astronomical
baseball sports, high baseball, league stats, players, leagues
basketball sports, college basketball, team s basketball, espn, hoops
biology science, university

of
biology biological, genetics, plant

cad systems, computer cad, 3d modeling, architectural, 2d
chemistry science, university

of
chemical, chemistry chem, scientific, of chemistry

computer science systems, computer engineering, computing programming, papers, theory
consultants systems, manage-

ment
solutions, consulting consultants, programming, and web

cycling sports, url bike, bicycle bicycling, mtb, mountain bike
data communica-
tions

systems, manage-
ment

communications, solu-
tions

networks, clients, voice

data formats collection, which windows, graphics file, mac, truetype
earth sciences science, systems environmental, data survey, usgs, ecology
education computer, training learning microsoft, tutorials, certification
environment science, manage-

ment
environmental, environ-
ment

conservation, sustainable, the envi-
ronment

equestrian training, sports horse, equestrian riding, the horse, dressage
football sports, board football, league teams, players, leagues
golf sports, equipment golf, courses golfers, golf club, golf course
graphics images, collection graphics 3d, animation, animated
hardware computer, systems hardware, technologies hard, components, drives
hockey sports, canada hockey, team hockey league, teams, ice hockey
internet computer, support web based, rfc, hosting
martial arts arts, do martial, martial arts fu, defense, kung fu
math science, university

of
math, mathematics theory, geometry, algebra

motorsports photos, sports racing, race driver, track, speedway
multimedia media, video digital, flash 3d, animation, graphic
physics science, university

of
physics scientific, solar, theory

programming systems, computer programming, code object, documentation, unix
running sports, training running, race races, track, athletic
security systems, computer security, system security and, nt, encryption
skiing sports, country ski, skiing winter, snowboarding, racing
soccer sports, url soccer, league teams, players, leagues
social sciences science, university

of
social economics, theory, anthropology

software systems, computer windows, system application, tool, programming
systems computer, systems computers, hardware linux, emulator, software and
technology systems, university

of
engineering scientific, engineers, chemical

tennis sports, professional tennis, s tennis men s, women s tennis, of tennis
track and field sports, training running, track track and field, track and, and field
water sports board, sports boat sailing, boats, race

Table 3: Algorithm predicted top two parents, selfs and children for each of the 41 tested categories. Blank values

mean no terms fell into the specified region for that category.

3.2 Results
Using the data from Figure 7, we specified the following
cutoffs:

maxParentNegative = 0.08

maxSelfNegative = 0.06

minSelfPositive = 0.4

maxChildPositive = 0.4

maxChildNegative = 0.02

Table 3 shows the top parents, selfs and children generated
using the algorithm described in Section 3.1 as applied to
the virtual documents, as described in Section 2.1. The
results show that in all 41 categories the Open Directory as-
signed parent (replacing “computer” for “computers”) was



ranked in the top 5. In about 80% of the categories the
top ranked selfs were identical, or effectively the same (syn-
onym, or identical stem) as the Open Directory assigned
self. Children are more difficult to evaluate since there are
many reasonable children that are not listed.

Although in general the above algorithm appears to work,
there are several obvious limitations. First, in some cate-
gories, such as “Internet”, the cut-off points vary. Our al-
gorithm does not dynamically adjust to the data for a given
category. The manually assigned cut-offs simply show that
if we did know the cut-offs the algorithm would work; it
does not specify how to obtain such cut-offs automatically.
Second, phrases appear to sometimes have a lower positive
occurrence than single words. For example, the phrase “ar-
tificial intelligence” incorrectly appears as a child instead of
a self. Third, there is no stemming or intelligent feature re-
moval. For example, a feature such as “university of” should
be ignored since it ends with a stop word. Likewise, con-
sulting as opposed to consult, or computers as opposed to
computer are all examples where failure to stem has caused
problems.

Despite the problems, the simplistic algorithm suggests that
there are some basic relationships between features that can
be predicted based solely on their frequency of occurrence
in a positive set and in the whole collection. Clearly more
work and more detailed experiments are needed.

It should be noted that these categories are all at roughly the
same depth (from the root node of the open directory). This
increases the likelihood that the cut-offs work for multiple
categories, even though each category may be different.

Analysis of the documents in the clusters revealed that some
categories suffered from topic drift when random documents
were chosen. Our method for choosing the pages for each
positive cluster randomly picked pages from the set of all
documents in the category or one-level below. Unfortu-
nately, since the Open Directory does not guarantee an equal
number of documents in a category, it is possible to pick a
higher percentage of documents from one child. For exam-
ple, in the category of “Multimedia” there are only six URLs
in the category itself, with 560 pages in the child of “Flash
and Shockwave”. Randomly picking documents in that cat-
egory biases “flash and shockwave” over the more general
multimedia pages.

4. RELATED WORK
4.1 Cluster Analysis
There is a large body of related work on automatic sum-
marization. For example, Radev and Fan [9] describe a
technique for summarization of a cluster of web documents.
Their approach breaks down the documents into individual
sentences and identifies themes or “the most salient pas-
sages from the selected documents”. Their approach uses
“centroid-based summarization” and does not produce sets
of hierarchically related features.

Lexical techniques have been applied to infer various con-
cept relationships from text [1, 4, 5]. Hearst [5] describes a
method for finding lexical relations by identifying a set of
lexicosyntactic patterns, such as a comma separated list of

noun phrases, e.g. “bruises, wounds, broken bones or other
injuries”. These patterns are used to suggest types of lexical
relationships, for example bruises, wounds and broken bones
are all types of injuries. Caraballo describes a technique for
automatically constructing a hypernym-labeled noun hierar-
chy. A hypernym defines a relationship between word A and
word B if “native speakers of English accept that sentence
B is a (kind of) A”. Linguistic relationships such as those
described by Hearst and Caraballo are useful for generating
thesauri, but do not necessarily describe the relationship of
a cluster of documents to the rest of a collection. Knowing
that say “baseball is a sport” may be useful for hierarchy
generation if you knew a given cluster was about sports.
However, the extracted relationships do not necessarily re-
late to the actual frequency of the concepts in the set. Given
a cluster of sports documents that discusses primarily bas-
ketball and hockey, the fact that baseball is also a sport is
not as important for describing that set as other relation-
ships.

Sanderson and Croft [10] presented a statistical technique
based on subsumption relations. In their model, for two
terms x and y, x is said to subsume y if the probability of x

given y is one,1 and the probability of y given x is less than
one. A subsumption relationship is suggestive of a parent-
child relationship (in our case a self-child relationship). This
allows a hierarchy to be created in the context of a given
cluster. In contrast, our work focuses on specific general re-
gions of features identified as “parents” (more general than
the common theme), “selfs” (features that define or describe
the cluster as a whole) and “children” (features that describe
common sub-concepts). Their work is unable to distinguish
between a “parent-self” relationship and a “self-child” rela-
tionship. They only deal with a positive set of documents,
but statistics from the entire collection are needed to make
both distinctions. Considering the collection statistics can
also help to filter out less important terms that may not be
meaningful to describe the cluster.

Popescul and Ungar describe a simple statistical technique
using χ2 for automatically labeling document clusters [8].
Each (stemmed) feature was assigned a score based on the
product of local frequency and predictiveness. Their con-
cept of a good cluster label is similar to our notion of “self
features”. A good self feature is one that is both common
in the positive set and rare in the negative set, which corre-
sponds to high local frequency and a high predictiveness.

Our earlier work [3], describes how ranking features by ex-
pected entropy loss can be used to identify good candidates
for self names or parent or child concepts. Features that
are common in the positive set, and rare in the negative
set make good selfs and children, and also demonstrate high
expected entropy loss. Parents are also relatively rare in
the negative set, and common in the positive set and are
also likely to have high expected entropy loss. This work
focuses on separating out the different classes of features by
considering the specific positive and negative frequencies, as
opposed to ranking by a single entropy-based measure.

1They actually used 0.8 instead to reduce the noise.



4.2 Hierarchical Clustering
Another approach to analyzing a single cluster is to break
it down into sub-clusters — forming a hierarchy of clusters.
Fasulo [2] provides a nice summary of a variety of tech-
niques for clustering (and hierarchical clustering) of docu-
ments. Kumar et al. [7] analyze the web for communities,
using the link structure of the web to determine the clusters.
Hofmann and Puzicha [6] describe several statistical models
for co-occurrence data and relevant hierarchical clustering
algorithms. They specifically address the IR issues and term
relationships.

To clarify the difference between our work and hierarchi-
cal clustering approaches, we will present a simple exam-
ple. Imagine a user does a web search for “biology”, and
retrieves 20 documents, all of them general biology “hub”
pages. Each page is somewhat similar in that they don’t
focus on a specific aspect of biology. Hierarchical cluster-
ing would break the 20 documents down into sub-clusters,
where each sub-cluster would represent the “children” con-
cepts. The topmost cluster could arguably be considered
the “self” cluster. However, given the sub-clusters, there is
no easy way to discern which features (words or phrases)
are meaningful names. Is “botany” a better name for a sub-
cluster than “university”? In addition, given a group of sim-
ilar documents, the clustering may not be meaningful. The
sub-clusters could focus on irrelevant aspects - such as the
fact that half of the documents contain the phrase “copy-
right 2002”, while the other half do not. This is especially
difficult for web pages that are lacking of textual content,
i.e. a “welcome page” or a javaScript redirect, or if some of
the pages were about more than one topic (even though the
cluster as a whole is primarily about biology).

Using our approach, the set of the 20 documents would
be analyzed (considering the web structure to deal with
non-descriptive pages), and a histogram summarizing the
occurrence of each feature would be generated (individual
document frequency would be removed). Comparing the
generated histogram to a histogram of all documents (or
some larger reference collection), we would find that the
“best” name for the cluster is “biology”, and that “science”
is a term that describes a more general concept. Likewise,
we would identify several different “types” of biology, even
though no document may actually cluster into the set. For
example, “botany”, “cell biology”, “evolution”, etc. Phrases
such as “copyright 2002” would be recognized as unimpor-
tant because of their frequency in the larger collection. In
addition, the use of the web structure (extended anchort-
ext) can significantly improve the ability to name small sets
of documents over just the document full text, dealing with
the problems of “welcome pages” or redirects.

5. SUMMARY AND FUTURE WORK
This paper presents a simple statistical model that can be
used to predict parent, child and self features for a relatively
small cluster of documents. Self features can be used as a
recommended name for a cluster, while parents and children
can be used to “place” the cluster in the space of the larger
collection. Parent features suggest a more general concept,
while child features suggest concepts that describe a special-
ization of the self.

To support our model, we performed two different sets of
experiments. First, we graphed ground truth data, demon-
strating that actual parent, child, and self features generally
obey our predicted model. Second, we described and tested
a simple algorithm that can predict parent, child and self
features given feature histograms. The predicted features
often agreed with the ground truth, and may even suggest
new interconnections between related categories.

To improve the algorithm, we will be exploring methods
for automatically discovering the boundaries of the regions
given only the feature histograms for a single cluster. We
also intend to handle phrases differently than single word
terms, and include various linguistic techniques to improve
the selection process.
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