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Abstract— Capturing a precise snapshot of the Internet’s
topology is nearly impossible. Recent efforts have produced
autonomous-system (AS) level topologies with noticeably diver-
gent characteristics [1], [2], [3], even calling into question the
widespread belief that the Internet’s degree distribution follows
a power law. In turn, this casts doubt on Internet modeling
efforts, since validating a model on one data set does little
to ensure validity on another data set, or on the (unknown)
actual Internet topology. We examine six metrics—three existing
metrics and three of our own—applied to two large publicly-
available topology data sets. Certain metrics highlight differences
between the two topologies, while one of our static metrics and
several dynamic metrics display an invariance between the data
sets. Invariant metrics may capture properties inherent to the
Internet and independent of measurement methodology, and so
may serve as better gauges for validating models. We continue
by testing nine models—seven existing models and two of our
own—according to these metrics applied to the two data sets.
We distinguish between growth models that explicitly add nodes
and links over time in a dynamic process, and static models
that add all nodes and links in a batch process. All existing
growth models show poor performance according to at least one
metric, and only one existing static model, calledInet, matches
all metrics well. Our two new models—growth models that are
modest extensions of one of the simplest existing growth models—
perform better than any other growth model across all metrics.
Compared with Inet, our models are very simple. As growth
models, they provide a possible explanation for the processes
underlying the Internet’s growth, explaining, for example, why
the Internet’s degree distribution is more skewed than baseline
models would predict.

I. I NTRODUCTION

Researchers have explored characteristics and models of
the Internet, mainly validating their conclusions usingOregon
RouteViews(hereafter, simplyOregon), a well-known collec-
tion of (sampled) snapshots of the Internet’s autonomous-
systems (AS) level topology. Because of the Internet’s dis-
tributed nature, recording an accurate picture of its topology
at any given time is nearly impossible, casting some doubt
on the validity of measurements and models based on nec-
essarily incomplete data. Recently, using new methodologies
for measuring the Internet’s AS topology, researchers have
created an extended source of data [2], [3] (hereafter, sim-
ply Extended), combining several existing sources, including

Oregon, Looking Glass, RIPE, and other publicly available full
BGP routing tables, and capturing 20-50% more physical links
than Oregon. Note that the Internet’s AS topology encodes
logical links between autonomous systems (roughly, Internet
domains), often but not necessarily corresponding to direct
physical connections: a link in a BGP routing table may
encode an indirect physical connection through several routers
and switches. Since most pronouncements regarding Internet
characteristics and models—including the most cited property
of a power-law degree distribution—are based onOregondata,
the new findings raise several questions.

• What are the differences in characteristics of the Ore-
gon and Extended topology data sets?Researchers have
looked at differences in the two topologies’ degree dis-
tributions, though other characteristics of theExtended
topology are still largely unexplored.

• What metrics, if any, are invariant between the two
topologies?Even Extendedis a partial view of the true
Internet topology; it is not clear whetherOregon or
Extendedbetter represents the true Internet, or if neither
represent it well enough. However, identifying meaning-
ful invariant metrics that are the same for both data sets
may help identify properties inherent to the Internet and
less dependent on measurement methodology, and help
validate competing Internet models.

• What models match with characteristics observed in
the two data sets? To what extent do those models
capture some essential aspect of the Internet’s growth
mechanism?Models must be evaluated on two (often
conflicting) dimensions: (1) their correspondence with
data, and (2) their ability to abstract away inessential
details while retaining some essential aspects of the
system being modeled.

To begin to answer the first two questions, we compare
Oregonand Extendedusing three existing metrics and three
new metrics of our own: link-degree ratio, average node-degree
ratio, and skewness. We find that, while the two data sets
diverge according to most metrics, they agree nearly perfectly
according to average node-degree ratio, suggesting that this



metric is a good candidate for an invariant measure. We also
find that, although most of the metrics’ absolute values differ,
their relative changes over time are very similar between the
two data sets. So dynamic changes in metrics over time may
serve as additional candidate invariant measures.

In response to the third question, we compare the per-
formance of nine generative models of the Internet, two of
which are new. We examine bothgrowth modelsthat posit a
particular mechanism of growth over time, andstatic models
that input a number of nodes and edges and generate graphs
all at once, without explicitly formulating a growth procedure.
Among existing growth models, a subset show relatively good
performance on some static metrics, though none follow the
observed dynamic behavior of the Internet. A static model
called Inet does well at matching both static and dynamic
Internet characteristics, but may be over-tuned to theOregon
data; the model says little about the underlying processes
governing Internet growth, only mimicking it using a quite
complicated procedure. In short, we believe that, whileInet
certainly excels according to the first criteria of a good model
(item (1) of question three above), it arguably falls short
according to the second criteria (item (2) of question three).
Our new models, on the other hand, are quite simple, and do
make statements about the potential mechanisms underlying
Internet growth. Our models fit the static characteristics of the
Internet more closely than any other growth model, and as
closely asInet. However our models still fail to capture the
dynamic evolution of the Internet; it remains an open problem
to discover a plausible growth mechanism that meshes well
with the dynamic characteristics clearly visible in bothOregon
andExtendeddata.

II. PREVIOUS WORK

The Internet’s topology has been studied at macroscopic
level [4], the link architecture [5], [6], the end-to-end path
level [7], [8]. Scaling factors, such as power-law relationships
and Zipf distributions, arise in all aspects of network topology
[4], [9] and web-site hub performance [10].

Recent research [11], [12], [13], [14], [15], [16] has argued
that the performance of network protocols can be seriously
effected by the network topology and that building an effec-
tive topology generator is at least as important as protocol
simulations. Previously, the Waxman generator [17], whichis
a variant of the Erdos-Renyi random graph [18], was widely
used for protocol simulation. In this generator, the probability
of link creation depends on the Euclidean distance between
two nodes. However, since real network topologies have a hier-
archical rather than random structure, next generation network
generators such as Transit-Stub [19] and Tiers [20], which
explicitly inject hierarchical structure into the network, were
subsequently used. In 1999, Faloutsos et al. [4] discovered
several power-law distributions in Internet data, leadingto the
creation of new Internet topology generators.

Tangmunarunkit et al. [21] divide network topology genera-
tors into two categories:structural anddegree-basednetwork
generators. The major difference between these two categories

is that the former explicitly injects hierarchical structure into
the network, while the later generates graphs with power-
law degree distributions without any consideration of net-
work hierarchy. Tangmunarunkit et al. argue that even though
degree-based topology generators do not enforce hierarchical
structure in graphs, they present a loose hierarchical structure,
which is well matched to real Internet topology. Other recently
proposed generators [9], [22], [23], [24], [25], [26] can be
thought of as degree-based generators.

Characteristics of the Internet topology and its robustness
against failures have been widely studied [4], [9], [22], [27],
[28], with focus on extracting common regularities from
several snapshots of the real Internet topology (e.g., power-law
degree distributions). Properties measured on a single snapshot
of the Internet’s topology at a given time are examples ofstatic
metrics. On the other hand, researchers have shown that, for
example, the clustering coefficient of the Internet is growing
while the average diameter is decreasing over the past few
years [26], [29]. A second class of reasonable metrics for
characterizing the Internet are suchdynamicmetrics.

Park et al. [28], in examining the fault tolerance proper-
ties of Internet network models, also uncover some dynamic
patterns of the real Internet’s growth that are not capturedby
most existing models. One could of course simulate network
protocols (and failures) using the full details of the sampled
Internet topology instead of using models, but this limits one’s
ability to develop, for example, network protocols that best
fit future conditions. Though degree-based generators seemto
represent the Internet’s topology better than structural ones,
some degree-based topology generators seem to try more to
mimic generic properties than to provide explanatory power
regarding the Internet’s growth mechanism.

III. C OMPARISON OF TWOINTERNET AS TOPOLOGIES

Recently, [2], [3] provided more extended Internet topolo-
gies constructed using several sources, includingOregon
RouteViews, Looking Glassdata, RIPE database, and other
publicly available full BGP routing tables. Their extended
topologies contain more nodes (2%) and links (20% ∼ 50%
more). Also, degree-frequency distributions of their extended
topologies do not follow a strict power-law distribution while
original topologies do. Chen et al. [3] reported that their
extended topologies showed more ASes with degree between
4 and 300, resulting in a curve line in the distribution, as can
be seen in Figure 1(a).

Our first question is then “how different are the two
topologies?” Since both topologies offer only partial views
of the whole Internet, we do not really know which is a truer
reflection of the the real Internet topology.1 We compare the
two topologies according to several metrics; according to some
metrics the two topologies differ greatly. Our second question
is “can we identify invariant metrics that are consistent be-
tween the two Internet topologies?” If we can find them, these

1It is still possible that both available Internet AS maps aresystemically
biased due to limitation of traceroute-like methods [30].



metric may prove more useful in validating new and existing
Internet models.

Characteristics of the Internet topology can be divided
into two categories:static and dynamiccharacteristics [28].
For example, several common regularities (e.g., power-law
degree distributions), can be extracted from a snapshot of the
Internet topology and those regularities can be defined asstatic
characteristicsbecause of their consistency over time. On the
other hand, several growth patterns of the Internet can be
derived by tracing the behaviors of the Internet topology over
time. For example, the clustering coefficient of the Internet has
been growing and the average diameter of the Internet has been
decreasing over the past few years. We define these asdynamic
characteristicsof the Internet. Based on these definitions,
we choose six basic metrics, three static (including two new
metrics of our own) and three dynamic metrics (including one
of our own), for our analysis. In the following section, we will
briefly explain these metrics.

A. Metrics

1) Static metrics:Our first static metric is the cumulative
degree-frequencydistribution. It has been frequently observed
that the Internet AS graph has a degree distribution consistent
with a power law. LetV be the set of all nodes in the graph
andVk the set of nodes of degree equal or less thank. Then,
F (k) = |Vk|/|V | is the cumulative degree distribution. On
plots of the degree distribution, the horizontal axis is the
degree of nodes and the vertical axis plots1 − F (k).

We define a second metric called the cumulativelink-degree
ratio distribution. Let lowi (lower degree node) andhighi

(higher degree node) be the two nodes connected by linki.
ki

low denotes the degree of the lower degree node andki
high

denotes the degree of the higher degree node. Then the degree
ratio σi of the link i can be calculated aski

low/ki
high. The

cumulative distribution ofσ can be drawn similarly to the
previous metric.

Finally, we define a third metric called the cumulative
average-node-degree ratiodistribution. LetV ′

i be the set of
neighbor nodes of the nodei, and let ki

avg be the average
degree ofV ′

i . Then the average-node-degree ratioδi of node
i is defined aski/ki

avg. The cumulative distribution ofδ can
be drawn as above.

2) Dynamic metrics:We use three metrics for tracing the
behavior of the Internet topology over time.

We defineskewnessto measure how preferential the network
is. Consider the degree-rank distribution of a network. Letn
denote the number of nodes in the network andri be the rank
of node i according to its degree. The highest degree node
has rank one and any two nodes cannot have the same rank.
SkewnessSk is defined as that the sum over all nodes of the
product of rank times degree:

Sk =

∑

r(ri ∗ ki)

Sku

(1)

whereSku is the skewness of an idealized uniform network,

Sku =
∑

i

(ri ∗ ki) = k ∗

n
∑

r=1

r = k ∗
n ∗ (n + 1)

2
, (2)

wherek denotes the average (uniform) degree of the network.
Note thatSku is upper bound of

∑

r(ri ∗ ki), so1 ≥ Sk >
0. Sk values close to 0 mean that the network is extremely
preferential;Sk values close to 1 means that the network is
extremely random or uniform.

Average diameterandclustering coefficient[27], [31], [32]
are widely used metrics for the analysis of networks. Average
diameter or average shortest path length,d, is defined as
follows. Letd(v, w) be the length of the shortest path between
nodesv andw, whered(v, w) = ∞ if there is no path between
v and w. Let Π denote the set of distinct node pairs(v, w)
such thatd(v, w) 6= ∞.

d =

∑

(v,w)∈Π d(v, w)

|Π|
, (3)

wherev 6= w.
The clustering coefficient gives a measure of the probability

of connection between nodei’s neighbors. LetVi be the set of
neighbor nodes of nodei, andµi the number of links between
nodes inVi. Then, the clustering coefficientCi for nodei is
defined as follows:

Ci =
µi

|Vi| ∗ (|Vi| − 1)/2
. (4)

Then the clustering coefficient of the network is:

C =

∑

i∈V Ci

|V |
, (5)

whereV denotes the set of all nodes in the network.

B. Comparing theOregonand ExtendedInternet topologies

1) Static measurements:Among other findings, the creators
of theExtendeddata set noticed that their measurements do not
corroborate the strict power-law degree-frequency distribution
that theOregondata display. This is recreated in Figure 1(a).
We find that the separation between the two data sets is even
larger when examined according to link-degree ratio, as seen
in Figure 1(b). However, according to average-node-degree
ratio, plotted in Figure 1(c), the two Internet topologies have
nearly identical distributions. Average node-degree-ratio, then,
might be considered one of the key measures along which
to validate Internet topology generative models, since there
is a clear standard—constant across two distinct samples of
the Internet—against which to compare. The above analyses
were conducted usingOregonandExtendedsnapshots of the
Internet, both from April 21, 2001.2

2For all static measurements, we conduct the same analyses with several
snapshots of two Internet topologies and do not find any significant differences
among results.
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Fig. 1. Static metrics forOregonand Extendedtopologies on April 21, 2001.(a) Degree-frequency distribution:Extendedshows a looser fit to a power law,
while Oregon follows a nearly strict power law. (b) Link degree ratio: this metric clearly differentiates the two Internet topologies. (c) Average node degree
ratio: this measure appears invariant under both theOregonandExtendedtopologies.

2) Dynamic measurements:To trace the behaviors of two
Internet topologies, we downloaded nine snapshots of each
AS topology from [33], for weeks between March 31 and
May 26 2001. According to metricSk , Extendedis more
preferential thanOregon. The skewness ofOregonis between
0.37 and 0.38, while that ofExtendedis between 0.30 and
0.32. Also, the extended topologies show smaller average
diameters, but larger clustering coefficients than the original
topologies. Figure 2 shows these results.

One interesting observation is that the behaviors of the two
Internet topologies over the nine week period are quite similar,
even though their absolute metric magnitudes are different.3 To
confirm this observation, we trace several other propertiesof
the two topologies, including the number of nodes and links,
the average degree, node birth/death rates, and link birth/death
rates, and observe that all of these measures display dynamic
invariances—meaning that temporal trends strongly correlate
between the two data sources, even if absolute values differ.
Some of these results are shown in Figure 3.4. We argue that,
like the static metric average-node-degree ratio, these invariant
dynamic metrics should prove valuable for validating network
models.

IV. EXISTING INTERNET TOPOLOGY GENERATORS AND

OUR MODELS

In this section, we describe seven existing generative Inter-
net topology models, and two new models of our own. We
categorize the models according to whether they arestatic
models, meaning that they build the full networken masse
without an explicit model of growth over time, or dynamic
growth models, meaning that they incorporate an explicit
procedure for the network’s growth over time. In growth mod-
els, node connectivities are in general time-dependent—older

3Differences between absolute metric values may be caused bydifferences
in the data collection methodologies employed forOregon RouteViews[1] and
the Topology Project[33].

4Due to space limitations, we do not present all results.

nodes tend to have higher probabilities of gaining edges—
whereas there is no explicit notion of time in static models.

For growth models, there is a further distinction regarding
the way in which links are added to (or removed from) the
graph. Links can be added from a newly created node to the
existing network; we call theseexternallink additions. Or links
can be added between already existing nodes in the network;
we call theseinternal link additions.

Table I summarizes the characteristics of all nine models
employed in our experiments. For all network models, we
prohibit self links. Also, we prohibit network models from
generating duplicate links, rather than merging duplicatelinks
at the end; we choose to prohibit duplicates because merging
would reduce the number of links significantly. When a
network model does not generate a fully connected graph,
we only consider the largest connected component. (This
process also potentially reduces the number of nodes and links
significantly; however this method of canonicalization seems
as appropriate as any). In this section we briefly explain each
network model.

A. Static exponential (random) model

This model generates a random graph in the classic Erdos-
Renyi sense. All nodes are added initially, then links are added
one by one between pairs of (uniformly) randomly selected
nodes. For every edge endpoint added, the probability that the
edge endpoint attaches to a given node is

Πrand(i) =
1

|V |
, (6)

whereV is the set of all nodes. Random graphs often partition
into several disconnected subgraphs; as mentioned we keep
only the largest connected component. The model generates
most nodes with roughly the same degree.

B. Growing exponential (GE) model

GE is a dynamic or growth-model version of the random
graph model. At each time step, one node andm links are
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Fig. 2. Skewness, average diameter, and clustering coefficient; Our result clearly shows that the behaviors of two topologies are quite similar according to
three different metrics.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Weeks from March 31 to May 26 on 2001

P
r N

B
(k

) 
(c

um
m

ul
at

iv
e)

k=1
k=2
k=3
k>3

(a) Probability of new nodes with degree
k, Oregon

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Weeks from March 31 to May 26 on 2001

P
r N

B
(k

) 
(c

um
m

ul
at

iv
e)

k=1
k=2
k=3
k>3

(b) Probability of new nodes with degree
k, Extended

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Weeks from March 31 to May 26 on 2001

P
r N

D
(k

) 
(c

um
m

ul
at

iv
e)

k=1
k=2
k=3
k>3

(c) Probability of dead nodes with degree
k, Oregon

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weeks from March 31 to May 26 on 2001

P
r N

D
(k

) 
(c

um
m

ul
at

iv
e) k=1

k=2
k=3
k>3

(d) Probability of dead nodes with degree
k, Extended

Fig. 3. Node birth vs node death: (a) and (b); About75% of new nodes has degree one and25% of nodes are added with degree two in the Oregon
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TABLE I

COMPARING NINE GENERATIVEINTERNET TOPOLOGY MODELS.

Static/Growth Network Partition Operations
Random Static Y all nodes are added initially. internal link addition

GE Growth N node birth withm links
BA Growth N node birth withm links
AB Growth Y node birth withm links, internal link addition, rewiring
GLP Growth N node birth withm links, internal link addition
PG Growth Y node birth without links, internal link addition

Inet-3.0 Static N all nodes are added initially, heuristics link addition
First model Growth N node birth withm links, internal link addition

Second model Growth N node birth withm links, internal link addition, dynamic generation ofp

added. Them links are connectedexternally, meaning that
they all connect from the new node to one of the existing
nodes. The identity of the existing node is chosen uniformly
at random from among all nodes added to the graph in the
past. The probability that a given edge endpoint attaches toa
particular existing node is

Πge(i, t + ∆t) =
1

|V (t)|
, (7)

where V (t) is the number of nodes in the graph at timet.
Note that, although nodes are chosen uniformly at any given
time step, as the network grows, older nodes tend to gain more
links simply because they have more chances to.

C. Barab́asi-Albert (BA) model

The BA model [22] resembles GE except that destination
nodes are chosen according to a linearpreferential attachment
function, rather than uniformly at random. Again, at each time
step, one new node andm new links are added. Links are
added externally from the new node to an existing node. The
probability that existing nodei is chosen is proportional to its
degree:

Πba(ki, t + ∆t) =
ki(t)

∑

j kj(t)
, (8)

whereki(t) denotes the degree of nodei at time t. The BA
model is remarkable in its simplicity, and it seems to capture
the minimal assumptions required to generate graphs with
power-law degree distributions. However, in its basic form,
it is not flexible enough to fit different power law exponents.
The BA model, often cited as a more generic model (e.g., for
the World Wide Web, the power grid, the co-star graph of
Hollywood actors, etc.), touched off a wave of extensions and
analysis among computer scientists and physicists.

D. Generalized linear performance (GLP) model

GLP [26] is one of the proposed extensions of BA. In this
model, the probability of attachment is modified to better fit
Internet-like graphs:

Πglp(ki, t + ∆t) =
ki(t) − β

∑

j (kj(t) − β)
, (9)

where −∞ < β < 1. This model has two link addition
operations:

1) with probabilityp, m links are addedinternally—links
are added between two existing nodes. For each end-
point, a node is chosen with probability (9).

2) With probability1− p, one new node andm new links
are added externally from the new node to an existing
node chosen according to (9).

In the simulation, we set parameters asβ = 0.7124, m = 1.13,
andp = 0.4294, which are the same as those in the [26]. The
fractionalm value of 1.13 means that 13% of new nodes are
added with two links while 87% are added with one link,
yielding an expected number of links/edge of 1.13.

E. Albert-Barab́asi (AB) model

The AB model [25] is the authors’ own extension of their
BA model. In this model, three operations are used as the
network grows:

1) With probability p, m links are added internally. One
edge endpoint is selected uniformly at random while the
other endpoint is selected according to

Πab(ki, t + ∆t) =
ki(t) + 1

∑

j (kj(t) + 1)
, (10)

which is like (8) but with a “Laplacian smoothing”-like
term.

2) With probability q, m links are rewired. Nodei is
randomly selected and one of the linksli,j connectingi
with j is randomly selected. Linkli,j is replaced with a
new link li,k, wherek is chosen according to (10).

3) With probability1 − p − q, one new node andm links
are added externally from the new node to an existing
node chosen according to (10).

The rewiring operation often causes the graph to become
partitioned; we keep only the main connected component. In
the experiments, we use parametersm = 1, p = 0.45, and
q = 0.1.

F. “Pretty good” (PG) model

The PG model [34] is another extension of the BA model.
This model adds a parameterized component of uniform
attachment to the BA model’s strictly preferential attachment



policy. Specifically edge endpoints are chosen according toa
mixture α of preferential attachment and1 − α of uniform
attachment:

Π(ki, t + ∆t) = α
ki(t)

∑

j kj(t)
+ (1 − α)

1

|V (t)|
(11)

This additional degree of freedom is enough to allow flexibility
in fitting differing power-law exponents, and to fit typical
divergences from the strict power law often observed in the
low-degree region of a variety of naturally-occurring graphs,
including communities on the World Wide Web. The PG
model employs onlyinternal link additions. That is, all edge
endpoints are chosen according to (11), and new nodes are not
explicitly differentiated.

Note that in the limit asα → 0, PG corresponds to
GE, while asα → 1, PG corresponds to BA (modulo the
internal/external distinction).

The main problem in adapting this model to our problem is
that, because it employs only internal link additions, it gener-
ates too many disconnected nodes. For example, whenα = 0.7
andm = 2, around50% of nodes are disconnected. Because
we choose to keep only the largest connected component,
the average degree within this component is artificially high.
Alternative canonicalization policies might have yieldedmore
comparable results for this model.

G. Inet 3.0

Inet-3.0is the latest version of a complex yet very accurate
model [23], [35]. The user provides the desired number of
nodesN and the fractionk of nodes with degree one. The
model proceeds in five steps. First, the model calculates the
number of months (t) it would take the Internet to grow from
its initial size in Nov. 1997 to sizeN according to:

N = exp(0.0298 ∗ t + 7.9842). (12)

Second, the model definesV1, Vtop3, andV ′, respectively,
as the set of all degree-one nodes, the set of the three highest-
degree nodes, and the set of all nodes except nodes inV1 and
Vtop3. The model calculates the cumulative degree distribution
(defined above in Section III-A.1) for all nodes inV ′ in order
to match a power law:

1 − F (d) = ec ∗ dat+b. (13)

The degrees of particular nodes inV ′ are then assigned in
order to agree with (13). The degrees of nodes inVtop3 are
assigned according to:

d = ept+q ∗ rR. (14)

The parametersa, b, c, p, q, and R are known constants
estimated fromOregondata, andt is the number of months
since Nov. 1997.

Third, the model builds a spanning tree among all nodes
in Vtop3 andV ′. The spanning tree construction proceeds one
node at a time, although any interpretation in terms of the
network’s natural evolution seems unwarranted, since the final
degree values have already been pre-assigned in step two. In

each step a node is selected randomly. One of the node’s pre-
assigned edges connects to the existing graph according to:

P (i, j) =
wj

i
∑

k∈G wk
i

(15)

where

wj
i = max



1,

√

(

log
di

dj

)2

+

(

log
f (di)

f (dj)

)2


 ∗ dj (16)

This procedure continues until all nodes inVtop3 andV ′ are
added to the graph. Note that P(i,j) depends not only the degree
of destination nodej but also the degree of departure nodei. If
the degrees of two nodes are very different, the probabilityfor
two nodes to be connected is higher than the linear preference
assumption. Otherwise, it roughly follows the linear preference
assumption.

Fourth, the model connects all degree-one nodes (V1) to
the graph according to (15). Fifth, the model connects the
remaining free edge endpoints (edges that have been assigned
one endpoint in step two, but have not yet been assigned a
particular second endpoint), starting from the highest degree
nodes, according to (15).

We considerInet to be a static model, since the probabilities
of connections are time-independent; each node’s degree is
assigned in a batch process in step two. One interesting
characteristic of this model is that number of links isnot an
input parameter; this value is computed to match the proper
degree distribution using (in part) parametert. This model is
extremely accurate in generating random topologies similar in
many respects to theOregondata; in fact it fits this data much
better than every other model we tested. However, the model
seems particularly well-tuned toOregon, and its flexibility in
adapting to other data sets appears limited; for example, the
model does not fit theExtendeddata as well. Since the model
is effectively static—it generates graphs with the explicit
intention of matching particular aggregate characteristics like
the degree distribution (13)—it is limited in its ability to
provide any bottom-up explanation of why those particular
aggregate characteristics arise. For our experiments, we did not
re-implementInet; we used the code made publicly available
by the model’s authors [33].

H. Our models

In this section, we describe our own generative network
models. Our models are very simple and provide one possible
explanation for the degree distribution displayed in theOregon
data set, and why other growth models disagree. Two assump-
tions help motivate our models: (1) For each link between
two nodes—that is, between two ASs—we consider that the
higher-degree node is a service provider and the lower-degree
node is a customer; and (2) customers decide which providers
they would like to connect to. Our models posit reasonable
policies for customers to choose providers. Note that, bylink
we mean a logical link, or an entry in a BGP routing table, to
be consistent with the two AS-level data sources that we are
benchmarking against.



1) First model: Our first model can be thought of as yet
another extended BA model, with a new attachment probability
equation. Let nodei be the customer node, which tries to
generate a new link andki the degree of nodei. Also, let
V (ki + γ) be the set of nodes with degree higher thanki + γ.
Then, consumeri chooses providerj according to:

Π(kj , t + ∆t) =

{

kj(t)
∑

l∈V (ki+γ)
kl(t)

ifkj > (ki + γ)

0 otherwise
(17)

In other words, a customer node always selects a provider
node that has degree higher thanki +γ; among this group the
customer still prefers higher-degree nodes according to the
linear preference function. This assumption seems reasonable:
customers prefer to link up to providers whose connectivityis
strictly greater than their own. The assumption is supported by
our observations that most links on the Internet are hierarchical
(endpoints have greatly varying degrees) rather than peer-to-
peer (endpoints have similar degrees).

Our model has two operations: node birth and link birth.
With probability p, a new internal link is added between
existing nodes. The customer node is randomly selected and
connected to a provider according to (17). With probability
1−p, one new node andm external links are added. The new
node is considered a customer and them links are connected
to providers using (17). For the experiments, we setm = 1.25,
meaning that25% of new nodes are added with two links and
75% are added with one link [28],p = 0.45, andγ = 1.

2) Second model:Since the average degree of the Internet
changes continuously over time, Our second model adapts the
probability p (the internal link addition probability) dynam-
ically. We computeP (N), the average ratio of internal link
additions compared to all link additions, from theOregondata
using

In = L − N ∗ m

P (N) = In/(N + In), (18)

whereN is the number of nodes,L is the number of links,
and In is the number of internal links added after November
1997. Then the probabilityp can be computed as follows:

p(N + ∆N) = p(N) +
dP (N)

dN
= p(N) − (3 ∗ 10−9 ∗ N) +

3.6 ∗ 10−5, (19)

wherep(0) = 0.3, determined empirically. So, the number of
internal link additions versus external addition more closely
reflects the trends seen on the Internet. This change to the
model causes the average degree of nodes to increase over
time, as the number of internal link additions grows. Figure
4 shows that the resulting trend in average degree growth for
our model matches the trend found in theOregondata quite
closely.

Note thatγ determines how preferential a generated network
is. In BA and its other extensions,γ = −∞, meaning that all

existing nodes have a certain probability to be chosen as a
provider. However, in our models, customers choose providers
only among candidate nodes which have higher degree than
their own. We find that our models generate very similar
Internet-topology-like graphs whenγ = 1. All experiments
show results forγ = 1.

V. M ODEL COMPARISON

In this section, we compare nine Internet models according
to the three static and three dynamic metrics defined in
Section III-A.

A. Static metric performance

We first compare the cumulative degree-frequency distri-
bution for the nine models. Figure 5(a) shows a few of the
models that do not perform particularly well according to this
metric. Figure 5(b) shows thatAB, GLP, Inet, and our two
model do match the Internet (Oregon) data relatively well; with
our models and Inet performing best. Note, however, that all
models fitExtendedconsiderably less well. Link-degree ratio
clearly differentiates the models. Figures 5(c) and 5(d) split
the models according to the same partition used in separating
Figures 5(a) and 5(b).Inet matchesOregonthe best, and our
two model matchOregonvery closely as well;GLP matches
Extendedbest. According to average node-degree-ratio, we
find that our models, along withAB, Inet and GLP, show
relatively good performance. Again, Figures 5(e) and 5(f)
categorize models by their ability to fit theOregon degree
distribution.

Our models seem to exhibit excellent performance accord-
ing to the static metrics. Our models show better agreement
to the Internet than any other growth models across all three
metrics. OnlyInet show slightly better performance than our
models. In general, we do not find any noticeable differences
between the first and second model and conclude that the
average degree increment over time does not affect the static
metric performance of our model.

B. Dynamic metric performance

Next, we trace the behaviors of the models while the number
of nodes in the networks increases. For the experiments, the
Internet AS topologies fromOregonover a four year period
from November 1997 to February 2002 were used. In each
month, random graphs generated by network models include
the same number of nodes with the Internet AS topologies. In
Figure 6(a), only three network models (GLP, PG, and Inet)
show continuous skewness decrement. With average diameter,
only AB, GLP, and Inet shows decrement of the average
diameter. With clustering coefficient, onlyInet shows the
continuous increment. ExceptInet, all network models fail to
follow the dynamic characteristics of the Internet: significant
decrement of skewness and average diameter and significant
increment of clustering coefficient.

With dynamic metrics, our models show small-world effects
[31]; that is, their average diameters are very small but their
clustering coefficients are much larger than those of classical
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Fig. 4. Average degree growth of our second model compared tothe Internet (Oregon).

random graphs. Note that absolute metric values of our model
are very similar to those of the Internet. However, our models
still do not match the clear relative trends in the data, and this
cannot explain our observed dynamic characteristics of theIn-
ternet. Whenp is generated dynamically in our second model,
the resulting networks display higher clustering coefficients
but lower average diameters. However, its dynamic behavior
is quite similar to our first model and dynamicp does not affect
these trends. We can only conclude that the Internet’s average
degree change over time is not the main factor for determining
network structure according to the metrics we examined.

According to our analysis,Inet is the best Internet topology
generator in terms of matching the data, especially theOregon
data. However,Inet has several weaknesses. First, as it is
effectively a static model rather than a growth model, it is
limited in its ability to explain how the Internet grows. The
model’s complex heuristics designed to mimicOregon data
may in effect be overfitting or over-tuning to that particular
data source, making the model considerably less flexible in
matching other data sources or in generalizing toward the
future evolution of the Internet, even if that future topology
is a relatively slight variant of what is seen today. Among
growth models, our two new models appear to perform best,
with GLP the best among the seven existing models tested.

VI. L IMITATION AND FUTURE WORK

One major limitation of our models is that, like other growth
models, they do not consider node/link deaths, for reasons
of simplicity. However, Figure 7 shows that death events
are another important factor that can greatly affect Internet
topologies.

One may argue that it is somewhat strange that our second
model shows poor metric performance with average node-
degree ratio even though it resembles real Internet topologies
more. However, the current slow expansion of the Internet
is due to the rapid increment of death events coupled with
a slower increment of birth events. So, the actual internal-
link probability p should be larger than our model [28]. These
differences may affect the Internet’s topology and be a source
for the poor performance of our second model according to

dynamic metrics.
We also built a third model to explain Internet’s dynamic

characteristics. This model increasesγ continuously according
to the number of nodes to make a network more preferential
while it grows. This model shows good dynamic metric
performance, but does not work well with static metrics. We
believe that death events in the Internet affect the growth
pattern of the Internet significantly, and we need a closer
analysis of death events to explain the dynamic characteristics
of the Internet.

VII. C ONCLUSION

Recent studies have reported differing aggregate character-
istics of the Internet’s topology depending on the methodology
used for sampling the Internet’s true underlying structure. We
examine two different data sets using six metrics (three of our
own), showing that one static metric does a particularly good
job at differentiating the data sets, one static metric appears
invariant across the data sets, and all dynamic metrics exhibit a
degree of invariance. We then compare nine generative models
(two of our own). Among growth models, ours perform best,
but all growth models (including our own) fail to capture the
observed dynamic behavior of the Internet. A particular static
model calledInet does match the data well, but also is lacking
in terms of an explanation for the Internet’s growth pattern.
We eagerly await any breakthroughs—perhaps incorporatinga
model of node/link deaths—that might yield plausible expla-
nations for this striking behavior.
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