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Abstract— Capturing a precise snapshot of the Internet's Oregon Looking GlassRIPE, and other publicly available full
topology is nearly impossible. Recent efforts have produce BGP routing tables, and capturing 20-50% more physicaslink
autonomous-system (AS) level topologies with noticeablyiwkr- than Oregon Note that the Internet's AS topology encodes

gent characteristics [1], [2], [3], even calling into queson the - -
widespread belief that the Internet’s degree distribution follows logical links between autonomous systems (roughly, Internet

a power law. In turn, this casts doubt on Internet modeling domains), often but not necessarily corresponding to tirec
efforts, since validating a model on one data set does little physical connections: a link in a BGP routing table may
to ensure validity on another data set, or on the (unknown) encode an indirect physical connection through severaérsu
actual Internet topology. We examine six metrics—three esting 5,4 switches. Since most pronouncements regarding Iterne
metrics and three of our own—applied to two large publicly- . . - .
characteristics and models—including the most cited pigpe

available topology data sets. Certain metrics highlight diferences N
between the two topologies, while one of our static metricsral  Of @ power-law degree distribution—are baseddragondata,

several dynamic metrics display an invariance between theata the new findings raise several questions.
sets. Invariant metrics may capture properties inherent tothe
Internet and independent of measurement methodology, andos
may serve as better gauges for validating models. We contireu
by testing nine models—seven existing models and two of our
own—according to these metrics applied to the two data sets. TR feti
We distinguish between growth models that explicitly add ndes tributions, though other characteristics of tBatended
and links over time in a dynamic process, and static models topology ar_e St'l_l largely une_xplor_ed.

that add all nodes and links in a batch process. All existing * What metrics, if any, are invariant between the two

« What are the differences in characteristics of the Ore-
gon and Extended topology data sef®@searchers have
looked at differences in the two topologies’ degree dis-

growth models show poor performance according to at least an
metric, and only one existing static model, called net, matches
all metrics well. Our two new models—growth models that are
modest extensions of one of the simplest existing growth mets—
perform better than any other growth model across all metrics.
Compared with Inet, our models are very simple. As growth
models, they provide a possible explanation for the process
underlying the Internet's growth, explaining, for example, why
the Internet’'s degree distribution is more skewed than badie
models would predict.

I. INTRODUCTION

Researchers have explored characteristics and models of

the Internet, mainly validating their conclusions usidgegon
RouteViewghereafter, simplyOregor, a well-known collec-

topologies?Even Extendedis a partial view of the true
Internet topology; it is not clear whethadregon or
Extendedbetter represents the true Internet, or if neither
represent it well enough. However, identifying meaning-
ful invariant metrics that are the same for both data sets
may help identify properties inherent to the Internet and
less dependent on measurement methodology, and help
validate competing Internet models.

What models match with characteristics observed in
the two data sets? To what extent do those models
capture some essential aspect of the Internet's growth
mechanism?Models must be evaluated on two (often
conflicting) dimensions: (1) their correspondence with
data, and (2) their ability to abstract away inessential

tion of (sampled) snapshots of the Internet's autonomous-
systems (AS) level topology. Because of the Internet’s dis-
tributed nature, recording an accurate picture of its togypl

at any given time is nearly impossible, casting some doubtTo begin to answer the first two questions, we compare
on the validity of measurements and models based on n@regonand Extendedusing three existing metrics and three
essarily incomplete data. Recently, using new methodetognew metrics of our own: link-degree ratio, average node-aeg
for measuring the Internet's AS topology, researchers haratio, and skewness. We find that, while the two data sets
created an extended source of data [2], [3] (hereafter, sidiverge according to most metrics, they agree nearly piyfec
ply Extendedl, combining several existing sources, includingccording to average node-degree ratio, suggesting tisat th

details while retaining some essential aspects of the
system being modeled.



metric is a good candidate for an invariant measure. We alsothat the former explicitly injects hierarchical struedunto
find that, although most of the metrics’ absolute valuesediff the network, while the later generates graphs with power-
their relative changes over time are very similar between tkaw degree distributions without any consideration of net-
two data sets. So dynamic changes in metrics over time magrk hierarchy. Tangmunarunkit et al. argue that even thoug
serve as additional candidate invariant measures. degree-based topology generators do not enforce hiecatchi
In response to the third question, we compare the petructure in graphs, they present a loose hierarchicadtsire,,
formance of nine generative models of the Internet, two @fhich is well matched to real Internet topology. Other refyen
which are new. We examine botdrowth modelghat posit a proposed generators [9], [22], [23], [24], [25], [26] can be
particular mechanism of growth over time, ast@tic models thought of as degree-based generators.
that input a number of nodes and edges and generate grapr@haracteristics of the Internet topology and its robustnes
all at once, without explicitly formulating a growth proage. against failures have been widely studied [4], [9], [22]7]i2
Among existing growth models, a subset show relatively go¢#8], with focus on extracting common regularities from
performance on some static metrics, though none follow tkeveral snapshots of the real Internet topology (e.g., ptave
observed dynamic behavior of the Internet. A static moddkgree distributions). Properties measured on a singleskoa
called Inet does well at matching both static and dynamiof the Internet’s topology at a given time are examplestafic
Internet characteristics, but may be over-tuned to@negon metrics. On the other hand, researchers have shown that, for
data; the model says little about the underlying processesample, the clustering coefficient of the Internet is grayvi
governing Internet growth, only mimicking it using a quitevhile the average diameter is decreasing over the past few
complicated procedure. In short, we believe that, wihilet years [26], [29]. A second class of reasonable metrics for
certainly excels according to the first criteria of a good elodcharacterizing the Internet are sugjinamicmetrics.
(tem (1) of question three above), it arguably falls short Park et al. [28], in examining the fault tolerance proper-
according to the second criteria (item (2) of question thredies of Internet network models, also uncover some dynamic
Our new models, on the other hand, are quite simple, and gatterns of the real Internet’s growth that are not captined
make statements about the potential mechanisms underlyingst existing models. One could of course simulate network
Internet growth. Our models fit the static characteristiche protocols (and failures) using the full details of the samapl
Internet more closely than any other growth model, and &sternet topology instead of using models, but this limite's
closely aslnet However our models still fail to capture theability to develop, for example, network protocols that tbes
dynamic evolution of the Internet; it remains an open problefit future conditions. Though degree-based generators seem
to discover a plausible growth mechanism that meshes wadpresent the Internet's topology better than structuredso
with the dynamic characteristics clearly visible in b@regon some degree-based topology generators seem to try more to
and Extendeddata. mimic generic properties than to provide explanatory power

regarding the Internet’s growth mechanism.
II. PREVIOUS WORK 9 g g

The Internet's topology has been studied at macroscopidll. COMPARISON OF TWOINTERNETAS TOPOLOGIES

level [4], the Iink. architecture [5], [6], the end-to-er?d_tpa Recently, [2], [3] provided more extended Internet topolo-
level [7], [8]. Scaling factors, such as power-law relasbips  ioq constructed using several sources, includggon
and Zipf d|str|buthns, arise in all aspects of network topy RouteViewsLooking Glassdata, RIPE database, and other
[4], [9] and web-site hub performance [10]. publicly available full BGP routing tables. Their extended
Recent research [11], [12], [13], [14], [15], [16] has aruey i, qgies contain more nodes%) and links Q0% ~ 50%

that the performance of network protocols can be seriousl.%re). Also, degree-frequency distributions of their exed
effected by the network topology and that building an effe%

i ) ) ologies do not follow a strict power-law distribution ik¢h
tive topology generator is at least as important as protoqﬂp

) . . > iginal topologies do. Chen et al. [3] reported that their
simulations. Previously, the Waxman generator [17], Which ¢ enqeq topologies showed more ASes with degree between

a variant of the Erdos—Rgnyi rand_om graph [18], was ,Wideléy and 300, resulting in a curve line in the distribution, as ca
used for protocol simulation. In this generator, the prdlitsb be seen in Figure 1(a).

of link creation depends on the Euclidean distance betweerbur first question is then
two nodes. However, since real network topologies havera hi?opologies””
archical rather than random structure, next generatiomarét |

gengrgtor.s.such.as Trgnsn—Stub [191 and Tiers [20], Wh'(f flection of the the real Internet topologyyVe compare the
explicitly inject hierarchical structure into the netwonkere twp topologies according to several metrics; accordingtoes
subseqluently lljsedo'l' I?blgtgg F_al(|3uttsos te(; ?I' |[4] éj_|scoverl% trics the two topologies differ greatly. Our second goest
several power-law distributions in Intemet data, leadimgne is “can we identify invariant metrics that are consistent be

creation of new Ipternet topolqu generators. tween the two Internet topologies?” If we can find them, these
Tangmunarunkit et al. [21] divide network topology genera-

tors into two Catego_”eSj[rUCtural anddegree-basedetwprk 11t is still possible that both available Internet AS maps systemically
generators. The major difference between these two caésgobiased due to limitation of traceroute-like methods [30].

how different are the two
Since both topologies offer only partial view
f the whole Internet, we do not really know which is a truer



metric may prove more useful in validating new and existinghere Sk,, is the skewness of an idealized uniform network,
Internet models. n

Characteristics of the Internet topology can be divided g, — Z(” w ki) = F * ZT A (n+ 1)’ @)
into two categoriesstatic and dynamiccharacteristics [28]. P —l 2
For example, several common regularities (e.g., power-law  _
degree distributions), can be extracted from a snapshdteof herek denotes the average (uniform) degree of the network.
Internet topology and those regularities can be defineieaie ~ Note thatSk,, is upper bound o (r; * k;), sol > Sk >
characteristicsbecause of their consistency over time. On thé Sk values close to 0 mean that the network is extremely
other hand, several growth patterns of the Internet can Peeferential;Sk values close to 1 means that the network is
derived by tracing the behaviors of the Internet topologgrovextremely random or uniform.
time. For example, the clustering coefficient of the Intéhses ~ Average diameteand clustering coefficienf27], [31], [32]
been growing and the average diameter of the Internet has baee widely used metrics for the analysis of networks. Averag
decreasing over the past few years. We define thedgrammic diameter or average shortest path length,is defined as
characteristicsof the Internet. Based on these definitiondollows. Letd(v,w) be the length of the shortest path between
we choose six basic metrics, three static (including two newdesv andw, whered(v,w) = oo if there is no path between
metrics of our own) and three dynamic metrics (including one and w. Let IT denote the set of distinct node pairs, w)
of our own), for our analysis. In the following section, welwi such thatd(v, w) # oco.
briefly explain these metrics. Z(v,w)GH dv,w)

d= :
I

3
A. Metrics
wherev # w.

1) Static metrics:Our first static metric is the cumulative The clustering coefficient gives a measure of the probgbilit
degree-frequencgfistribution. It has been frequently observedf connection between nodis neighbors. Lel; be the set of
that the Internet AS graph has a degree distribution cadistneighbor nodes of nodie andy; the number of links between
with a power law. LetV” be the set of all nodes in the grapmodes inV;. Then, the clustering coefficied; for node: is
andV, the set of nodes of degree equal or less thaiihen, defined as follows:

F(k) = |Vk|/|V] is the cumulative degree distribution. On s
plots of the degree distribution, the horizontal axis is the Ci = Vil (|VZ| 02 (4)
degree of nodes and the vertical axis plots F'(k). ¢ !

We define a second metric called the cumulalik-degree Then the clustering coefficient of the network is:
ratio distribution. Letlow; (lower degree node) andligh;

(higher degree node) be the two nodes connected byilink C = M7 (5)
ki, denotes the degree of the lower degree nodekng, Vi

denotes the degree of the higher degree node. Then the degfge 1, denotes the set of all nodes in the network.
ratio o; of the link ¢ can be calculated a;,,/j,;,,- The

low

cumulative distribution ofo can be drawn similarly to the
previous metric.

Finally, we define a third metric called the cumulative 1) Static measurement&mong other findings, the creators
average-node-degree ratidistribution. LetV/ be the set of Of theExtendediata set noticed that their measurements do not
* 2

neighbor nodes of the node and letki  be the average corroborate the strict power-law degree-frequency distion

degree of/”’. Then the average-node-degree ratioof node that theOregondata display. This is recreated in Figure 1(a).
i is defined ask; /ki, . The cumulative distribution of can e find that the separation between the two data sets is even
T avg-”

be drawn as above. larger when examined according to link-degree ratio, as see

2) Dynamic metrics:We use three metrics for tracing thein Figure 1(b). However, according to average-node-degree

behavior of the Internet topology over time. ratio, plotte(_j n Elgqre 1(0)’ the two Internet tOpO!OgIGB/h
nearly identical distributions. Average node-degreer#ten,

We defineskewnesto measure how preferential the netwo”fnight be considered one of the key measures along which

is. Consider the degree-rank_dlstrlbutlon of a network. het to validate Internet topology generative models, sinceethe
denote the number of nodes in the network antde the rank .

, . : : is a clear standard—constant across two distinct samples of
of nodei according to its degree. The highest degree noqss?

h K q q h h E Internet—against which to compare. The above analyses
as rank one and any two nodes cannot have the same raiitee condycted usin@regonand Extendedsnapshots of the

SkewnessSk is defined as that the sum over all nodes of thﬁ‘nternet both from April 21, 2001
product of rank times degree: ' ’ '

B. Comparing theédregonand Extendedinternet topologies

2For all static measurements, we conduct the same analysessavieral
Sk — Zr(r’i * kz) (1) snapshots of two Internet topologies and do not find any feigmit differences
- Sk, among results.
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Fig. 1. Static metrics forOregonand Extendedtopologies on April 21, 2001(a) Degree-frequency distributioiExtendedshows a looser fit to a power law,
while Oregonfollows a nearly strict power law. (b) Link degree ratio:ghmetric clearly differentiates the two Internet topolagiéc) Average node degree
ratio: this measure appears invariant under bothQnegonand Extendedtopologies.

2) Dynamic measurement§o trace the behaviors of two nodes tend to have higher probabilities of gaining edges—
Internet topologies, we downloaded nine snapshots of eaghereas there is no explicit notion of time in static models.
AS topology from [33], for weeks between March 31 and For growth models, there is a further distinction regarding
May 26 2001. According to metricsk, Extendedis more the way in which links are added to (or removed from) the
preferential tharDregon The skewness dDregonis between graph. Links can be added from a newly created node to the
0.37 and 0.38, while that oExtendedis between 0.30 and existing network; we call thesexternallink additions. Or links
0.32. Also, the extended topologies show smaller averagen be added between already existing nodes in the network;
diameters, but larger clustering coefficients than theimalg we call thesanternal link additions.
topologies. Figure 2 shows these results. Table | summarizes the characteristics of all nine models

One interesting observation is that the behaviors of the tvemnployed in our experiments. For all network models, we
Internet topologies over the nine week period are quitelaitni prohibit self links. Also, we prohibit network models from
even though their absolute metric magnitudes are diffé¥@at generating duplicate links, rather than merging duplitiates
confirm this observation, we trace several other propedfesat the end; we choose to prohibit duplicates because merging
the two topologies, including the number of nodes and links/ould reduce the number of links significantly. When a
the average degree, node birth/death rates, and link deétti network model does not generate a fully connected graph,
rates, and observe that all of these measures display dgnamé only consider the largest connected component. (This
invariances—meaning that temporal trends strongly caigel process also potentially reduces the number of nodes aksl lin
between the two data sources, even if absolute values.diffdgnificantly; however this method of canonicalizationreee
Some of these results are shown in Figure 8/e argue that, as appropriate as any). In this section we briefly explaimeac
like the static metric average-node-degree ratio, thesgiamt network model.
dynamic metrics should prove valuable for validating netwo

models. A. Static exponential (random) model

This model generates a random graph in the classic Erdos-
IV. EXISTING INTERNET TOPOLOGY GENERATORS AND  Renyi sense. All nodes are added initially, then links ameald
OUR MODELS one by one between pairs of (uniformly) randomly selected

In this section, we describe seven existing generativar—lnthdes' For every edge endpoint added, the probability ieat t

net topology models, and two new models of our own. V\%dge endpoint attaches to a given node is
categorize the models according to whether they siatic T, anal(i) = 1 ©6)
models, meaning that they build the full netwoek masse e v’

without an explicit model of growth over time, or dynamiGynerey is the set of all nodes. Random graphs often partition
growth models, meaning that they incorporate an explicihio several disconnected subgraphs; as mentioned we keep

procedure for the network’s growth over time. In growth modsp|y the largest connected component. The model generates
els, node connectivities are in general time-dependerderol st nodes with roughly the same degree.

SDifferences between absolute metric values may be causeiffeyences B. Growing exponential (GE) model

in the data collection methodologies employed@egon RouteVie and . . .
the Topology Projec33]. ? Py 9 W] GE is a dynamic or growth-model version of the random

“4Due to space limitations, we do not present all results. graph model. At each time step, one node amdinks are
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TABLE |
COMPARING NINE GENERATIVEINTERNET TOPOLOGY MODELS

| | Static/Growth| Network Partition] Operations

Random Static Y all nodes are added initially. internal link addition
GE Growth N node birth withm links
BA Growth N node birth withm links
AB Growth Y node birth withm links, internal link addition, rewiring
GLP Growth N node birth withm links, internal link addition
PG Growth Y node birth without links, internal link addition

Inet-3.0 Static N all nodes are added initially, heuristics link addition

First model Growth N node birth withm links, internal link addition
Second model Growth N node birth withm links, internal link addition, dynamic generation pf

added. Them links are connecte@xternally meaning that where —co < @ < 1. This model has two link addition
they all connect from the new node to one of the existingperations:

nodes. The identity of the existing node is chosen uniformly 1) with probability p, m links are addednternally—links

at random from among all nodes added to the graph in the are added between two existing nodes. For each end-
past. The probability that a given edge endpoint attaches to point, a node is chosen with probability (9).

particular existing node is 2) With probability 1 — p, one new node angh new links
1 are added externally from the new node to an existing
Mge(i, t + At) = Vo @) node chosen according to (9).

In the simulation, we set parametersas: 0.7124, m = 1.13,
where V(¢) is the number of nodes in the graph at time andp = 0.4294, which are the same as those in the [26]. The
Note that, although nodes are chosen uniformly at any givectionalm value of 1.13 means that 13% of new nodes are
time step, as the network grows, older nodes tend to gain m@igded with two links while 87% are added with one link,
links simply because they have more chances to. yielding an expected number of links/edge of 1.13.

C. Baralasi-Albert (BA) model E. Albert-Baralasi (AB) model

The BA model [22] resembles GE except that destination he AB model [25] is the authors’ own extension of their
nodes are chosen according to a linpeeferential attachment BA model. In this model, three operations are used as the
function, rather than uniformly at random. Again, at eacheti Network grows:
step, one new node ana new links are added. Links are 1) With probability p, m links are added internally. One
added externally from the new node to an existing node. The edge endpointis selected uniformly at random while the

probability that existing nodéis chosen is proportional to its other endpoint is selected according to
degree: Ei(t) +1
ki(t) My (kiyt + Af) = D EL ()
Moo (ki t + At) =l (8) > (ki) + 1)
R S0 /

which is like (8) but with a “Laplacian smoothing’-like

wherek;(t) denotes the degree of nodet time¢. The BA term.

model is remarkable in its simplicity, and it seems to captur 2) With probability ¢, m links are rewired. Node is

the minimal assumptions required to generate graphs with randomly selected and one of the linkg connectingi

power-law degree distributions. However, in its basic form with j is randomly selected. Link ; is replaced with a

it is not flexible enough to fit different power law exponents. new link /; ,, wherek is chosen according to (10).

The BA model, often cited as a more generic model (e.g., for3) With probabilityl — p — ¢, one new node angh links

the World Wide Web, the power grid, the co-star graph of  are added externally from the new node to an existing

Hollywood actors, etc.), touched off a wave of extensiors an node chosen according to (10).

analysis among computer scientists and physicists. The rewiring operation often causes the graph to become

partitioned; we keep only the main connected component. In

the experiments, we use parametets= 1, p = 0.45, and
GLP [26] is one of the proposed extensions of BA. In thig = 0.1.

model, the probability of attachment is modified to better fi.g_ “Pretty good” (PG) model

Internet-like graphs: ) )
The PG model [34] is another extension of the BA model.
ki(t) — B @) This model adds a parameterized component of uniform
> (ki) — B)’ attachment to the BA model’s strictly preferential attaeimn

D. Generalized linear performance (GLP) model

Hglp(ki, t+ At) =



policy. Specifically edge endpoints are chosen accordirg teach step a node is selected randomly. One of the node’s pre-
mixture « of preferential attachment and— « of uniform assigned edges connects to the existing graph according to:

attachment: w
_ Pli,j) = —%i 15
H(ki, t+ At) = OL% + (1 — O[)|V—tt)| (12) ( ]) ZkeG w? (15)
3 where
This additional degree of freedom is enough to allow flekipil 3 3
in fitting differing power-law exponents, and to fit typical ,J — max [ 1 \/<log£> n (logf(di)> «d; (16)
divergences from the strict power law often observed in the * ’ d; f(d;) !

low-degree region of a variety of naturally-occurring dra : _ : .
g g g Y 9 drap g his procedure continues until all nodes¥g,; and V"’ are

including communities on the World Wide Web. The P - ;
model employs onlynternal link additions. That is, all edge added 0 the gra%h..tl)\lotelthathP((l:iJ) deper}dds notonly th.dﬁ gr
endpoints are chosen according to (11), and new nodes areﬁoqestlnanon nodg but also the egree o eparture no "
explicitly differentiated the degrees of two nodes are very different, the probalidity
Note that in the Iir'nit asa — 0, PG corresponds to two nodes to be connected is higher than the linear preferenc
GE. while asa — 1. PG correspon,ds to BA (modulo theassumption.Otherwise, it roughly follows the linear prefece
’ ’ assumption.

internal/external distinction). Fourth. th del s all d
The main problem in adapting this model to our problem i ourth, the model connects all degree-one nodd3 (0

that, because it employs only internal link additions, ihge t?'e graph according to (15). Fifth, the model connects the

ates too many disconnected nodes. For example, wher. 7 remaining free edge endpoints (edges that have been adsigne

andm = 2, around50% of nodes are disconnected. Becaus®'® endpoint in step two, but have not yet been assigned a

we choose to keep only the largest connected compone[}ﬂ,rticuIar secqnd endpoint), starting from the highestreeg
the average degree within this component is artificiallyhhig hodes, according to (15).

Alternative canonicalization policies might have yieldedre Ofvggncnoencst:gﬁ;nztréo t?g:_ﬁggcggzilt’_ Sg;%i t?\idp(;%bgzm;{f: is
comparable results for this model. P ' 9

assigned in a batch process in step two. One interesting
G. Inet 3.0 characteristic of this model is that number of linksnigt an

Inet-3.0is the latest version of a complex yet very accural@Put parameter; this value is computed to match the proper
model [23], [35]. The user provides the desired number fgree distribution using (in part) parametefhis model is
nodesN and the fractiont of nodes with degree one. The€Xxtremely accurate in generating random topologies sinila

model proceeds in five steps. First, the model calculates RNy respects to th@regondata; in fact it fits this data much
number of monthst] it would take the Internet to grow from better than every other model we tested. However, the model

its initial size in Nov. 1997 to sizéV according to: seems particularly well-tuned ®@regon and its flexibility in
adapting to other data sets appears limited; for exampée, th
N = exp(0.0298 x t + 7.9842). (12) model does not fit th&xtendeddata as well. Since the model

Second, the model defingg, Vi3, and V', respectively, is effectively static—it generates graphs with the explici

as the set of all degree-one nodes, the set of the three high. ention of matching particular aggregate charactesslike
degree nodes, and the set of all n(’)des except nodes amd the degree distribution (13)—it is limited in its ability to

Viops. The model calculates the cumulative degree distributi(ﬁ’f'iov'de any bottom_—up exp_lanaﬂon of why _those partlcular
(defined above in Section Ill-A.1) for all nodes W in order aggregate characteristics arise. For our experimentsjdend
to match a power law: re-implementinet we used the code made publicly available

by the model's authors [33].
_ _ ¢ at+b
1= F(d) = e xd™™. (13 4. our models

The degrees of particular nodes Wi are then assigned in |n this section, we describe our own generative network
order to agree with (13). The degrees of noded/if,; are models. Our models are very simple and provide one possible
assigned according to: explanation for the degree distribution displayed in@regon
d = Ptta 4 R data set, and why other growth models disagree. Two assump-
=e * it 14 . .
tions help motivate our models: (1) For each link between
The parameters, b, ¢, p, ¢, and R are known constants two nodes—that is, between two ASs—we consider that the
estimated fromOregondata, andt is the number of months higher-degree node is a service provider and the loweregegr
since Nov. 1997. node is a customer; and (2) customers decide which providers
Third, the model builds a spanning tree among all nodésey would like to connect to. Our models posit reasonable
in Viops @andV’. The spanning tree construction proceeds ommlicies for customers to choose providers. Note thatlirdy
node at a time, although any interpretation in terms of thvee mean a logical link, or an entry in a BGP routing table, to
network’s natural evolution seems unwarranted, since tta fi be consistent with the two AS-level data sources that we are
degree values have already been pre-assigned in step twobénchmarking against.



1) First model: Our first model can be thought of as yeexisting nodes have a certain probability to be chosen as a
another extended BA model, with a new attachment probgbilpprovider. However, in our models, customers choose proside
equation. Let node be the customer node, which tries tmnly among candidate nodes which have higher degree than
generate a new link and; the degree of nodeé. Also, let their own. We find that our models generate very similar
V (ki +~) be the set of nodes with degree higher tthan-~. Internet-topology-like graphs whem = 1. All experiments

Then, consumei chooses providef according to: show results fory = 1.
ki (t) :
> ifk; > (ki +7 V. MODEL COMPARISON
H(kj, t+ At) = ZlEV(ki‘F’Y) k() ! ( ' ) . . . .
0 otherwise In this section, we compare nine Internet models according

(17) to the three static and three dynamic metrics defined in
In other words, a customer node always selects a providegction IlI-A.
node that has degree higher thign-~; among this group the . .
customer still prefers higher-degree nodes according ¢o th- Static metric performance
linear preference function. This assumption seems reatmna We first compare the cumulative degree-frequency distri-
customers prefer to link up to providers whose connectigity bution for the nine models. Figure 5(a) shows a few of the
strictly greater than their own. The assumption is suppidsie models that do not perform particularly well according tisth
our observations that most links on the Internet are hibieat metric. Figure 5(b) shows thaB, GLP, Inet and our two
(endpoints have greatly varying degrees) rather than feeermodel do match the Internebtegor) data relatively well; with
peer (endpoints have similar degrees). our models and Inet performing best. Note, however, that all
Our model has two operations: node birth and link birthmodels fitExtendedconsiderably less well. Link-degree ratio
With probability p, a new internal link is added betweerclearly differentiates the models. Figures 5(c) and 5(dit sp
existing nodes. The customer node is randomly selected dhél models according to the same partition used in sepgratin
connected to a provider according to (17). With probabilitrigures 5(a) and 5(b)net matchesOregonthe best, and our
1 —p, one new node anth external links are added. The newtwo model matchOregonvery closely as wellGLP matches
node is considered a customer and thdinks are connected Extendedbest. According to average node-degree-ratio, we
to providers using (17). For the experiments, werset 1.25, find that our models, along witlB, Inet and GLP, show
meaning tha5% of new nodes are added with two links andelatively good performance. Again, Figures 5(e) and 5(f)
75% are added with one link [28]) = 0.45, and~y = 1. categorize models by their ability to fit th@regon degree
2) Second modelSince the average degree of the Internglistribution.
changes continuously over time, Our second model adapts th&ur models seem to exhibit excellent performance accord-
probability p (the internal link addition probability) dynam-ing to the static metrics. Our models show better agreement
ically. We computeP(N), the average ratio of internal link to the Internet than any other growth models across all three
additions compared to all link additions, from tBeegondata metrics. Onlylnet show slightly better performance than our
using models. In general, we do not find any noticeable differences
between the first and second model and conclude that the
In = L-N=xm average degree increment over time does not affect the stati
P(N) = 1In/(N + In), (18) metric performance of our model.

where N is the number of noded, is the number of links, B. Dynamic metric performance
and In is the number of internal links added after November Next, we trace the behaviors of the models while the number

1997. Then the probability can be computed as follows: of nodes in the networks increases. For the experiments, the

dP(N) Internet AS topologies fron®regonover a four year period
p(N+AN) = p(N)+ dN from November 1997 to February 2002 were used. In each
= p(N)—(3%1072%N) + month, random graphs generated by network models include
3.6%10°° (19) the same number of nodes with the Internet AS topologies. In

Figure 6(a), only three network modelSI(P, PG, andInet)
wherep(0) = 0.3, determined empirically. So, the number oShow continuous skewness decrement. With average diameter
internal link additions versus external addition more elgs only AB, GLP, and Inet shows decrement of the average
reflects the trends seen on the Internet. This change to themeter. With clustering coefficient, onlinet shows the
model causes the average degree of nodes to increase ceetinuous increment. Excepret, all network models fail to
time, as the number of internal link additions grows. Figur®llow the dynamic characteristics of the Internet: sigaifit
4 shows that the resulting trend in average degree growth fiecrement of skewness and average diameter and significant
our model matches the trend found in t@eegondata quite increment of clustering coefficient.
closely. With dynamic metrics, our models show small-world effects

Note thaty determines how preferential a generated netwofR1]; that is, their average diameters are very small buir the
is. In BA and its other extensions,= —oo, meaning that all clustering coefficients are much larger than those of daksi
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Fig. 4. Average degree growth of our second model comparedetdnternet Qregor).

random graphs. Note that absolute metric values of our modighamic metrics.
are very similar to those of the Internet. However, our medel We also built a third model to explain Internet's dynamic
still do not match the clear relative trends in the data, &gl t characteristics. This model increasesontinuously according
cannot explain our observed dynamic characteristics ofrthe to the number of nodes to make a network more preferential
ternet. Wherp is generated dynamically in our second modelyhile it grows. This model shows good dynamic metric
the resulting networks display higher clustering coeffitse performance, but does not work well with static metrics. We
but lower average diameters. However, its dynamic behavisglieve that death events in the Internet affect the growth
is quite similar to our first model and dynamicloes not affect pattern of the Internet significantly, and we need a closer
these trends. We can only conclude that the Internet’s geeranalysis of death events to explain the dynamic charatiteris
degree change over time is not the main factor for determiniof the Internet.
network structure according to the metrics we examined.
According to our analysidnetis the best Internet topology VII. CONCLUSION
generator in terms of matching the data, especiallyQregon  Recent studies have reported differing aggregate characte
data. However)net has several weaknesses. First, as it istics of the Internet’s topology depending on the methogyl
effectively a static model rather than a growth model, it igsed for sampling the Internet’s true underlying structiive
limited in its ability to explain how the Internet grows. Theexamine two different data sets using six metrics (threeuof o
model's complex heuristics designed to minfizegondata own), showing that one static metric does a particularlycyoo
may in effect be overfitting or over-tuning to that partiaulajob at differentiating the data sets, one static metric appe
data source, making the model considerably less flexible iiivariant across the data sets, and all dynamic metricsixhi
matching other data sources or in generalizing toward t@egree of invariance. We then compare nine generative model
future evolution of the Internet, even if that future topgpjo (two of our own). Among growth models, ours perform best,
is a relatively slight variant of what is seen today. Amongut all growth models (including our own) fail to capture the
growth models, our two new models appear to perform beshserved dynamic behavior of the Internet. A particulatista
with GLP the best among the seven existing models testedmodel callednet does match the data well, but also is lacking
in terms of an explanation for the Internet’'s growth pattern
VI. LIMITATION AND FUTURE WORK We eagerly await any breakthroughs—perhaps incorporating

One major limitation of our models is that, like other growtfnodel of node/link deaths—that might yield plausible expla
models, they do not consider nodellink deaths, for reasof@fions for this striking behavior.
of simplicity. However, Figure 7 shows that death events
are another important factor that can greatly affect Irgern
topologies. We gratefully acknowledge partial support from Ford Motor
One may argue that it is somewhat strange that our secds@. We thank Steve Lawrence. We thank the people behind
model shows poor metric performance with average noderegon RouteViews [1] and the Topology Project [33] for
degree ratio even though it resembles real Internet topesogmaking their valuable data public.
more. However, the current slow expansion of the Internet
is due to the rapid increment of death events coupled with
a slower increment of birth events. So, the actual internafd] Oregon RouteViews http:/moat.nlanr.net/Routingftiata/.
link probability p should be larger than our model [28]. Thesel2] H- Chang, R. Govindan, S. Jamin, S. Shenker, and W. \iféiin “To-
differences may affect the Internet’s topology and be a®ur gz;%srtcégléwg_ﬁﬁosz nEg\gSAggsﬁmlgﬁnEtngsggﬁg Ecwfﬁl
for the poor performance of our second model according to Tech. Rep., 2002.
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to Oregon but GLP generates distributions similar extended This distribution clearly differentiates the models. @nodels show better performance than
other models excepnet (e,f) Average node degree ratidB, Inet and GLP still show good performance with this metric. Our second etahow slightly
worse performance than the first model. In general, our twdaisogenerate good matching distributions over all threticse
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suggest that the effect of link death cannot be ignored.
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