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Abstract

We develop a maximum entropy (maxent) approach to generat-
ing recommendations in the context of a user’s current naviga-
tion stream, suitable for environments where data is sparse, high-
dimensional, and dynamic—conditions typical of many recommen-
dation applications. We address sparsity and dimensionality re-
duction by first clustering items based on user access patterns so
as to attempt to minimize the apriori probability that recommen-
dations will cross cluster boundaries and then recommending only
within clusters. We address the inherent dynamic nature of the
problem by explicitly modeling the data as a time series; we show
how this representational expressivity fits naturally into a maxent
framework. We conduct experiments on data from ResearchIndex,
a popular online repository of over 470,000 computer science docu-
ments. We show that our maxent formulation outperforms several
competing algorithms in offline tests simulating the recommenda-
tion of documents to ResearchIndex users.

1 Introduction

Recommender systems attempt to automate the process of “word of mouth” rec-
ommendations within a community. Typical application environments are dynamic
in many respects: users come and go, users preferences and goals change, items are
added and removed, and user navigation itself is a dynamic process. Recommenda-
tion domains are also often high dimensional and sparse, with tens or hundreds of
thousands of items, among which very few are known to any particular user.

Consider, for instance, the problem of generating recommendations within Re-
searchIndex (a.k.a., CiteSeer),1 an online digital library of computer science papers,

1http://www.researchindex.com



receiving thousands of user accesses per hour. The site automatically locates com-
puter science papers found on the Web, indexes their full text, allows browsing via
the literature citation graph, and isolates the text around citations, among other
services [8]. The archive contains over 470,000 documents including the full text of
each document, citation links between documents, and a wealth of user access data.
With so many documents, and only seven accesses per user on average, the user-
document data matrix is exceedingly sparse and thus challenging to model. In this
paper, we work with the ResearchIndex data, since it is an interesting application
domain, and is typical of many recommendation application areas [14].

There are two conceptually different ways of making recommendations. A content

filtering approach is to recommend solely based on the features of a document D

(e.g., showing documents written by the same author(s), or textually similar docu-
ments to D). These methods have been shown to be good predictors [3]. Another
possibility is to perform collaborative filtering [13] by assessing the similarities be-
tween the documents requested by the current user and the users who interacted
with ResearchIndex in the past. Once the users with browsing histories similar to
that of a given user are identified, an assumption is made that the future browsing
patterns will be similar as well, and the prediction is made accordingly. Common
measures of similarity between users include Pearson correlation coefficient [13],
mean squared error [16], and vector similarity [1]. More recent work includes ap-
plication of statistical machine learning techniques, such as Bayesian networks [1],
dependency networks [6], singular value decomposition [14] and latent class mod-
els [7, 12]. Most of these recommendation algorithms are context and order inde-
pendent: that is, the rank of recommendations does not depend on the context of
the user’s current navigation or on recency effects (past viewed items receive as
much weight as recently viewed items).

Currently, ResearchIndex mostly employs fairly simple content-based recom-
menders. Our objective was to design a superior (or at least complementary) model-
based recommendation algorithm that (1) is tuned for a particular user at hand,
and (2) takes into account the identity of the currently-viewed document D, so as
not the lead the user too far astray from his or her current search goal.

To overcome the sparsity and high dimensionality of the data, we cluster the doc-
uments with an objective of maximizing the likelihood that recommendable items
co-occur in the same cluster. By marrying the clustering technique with the end
goal of recommendation, our approach appears to do a good job at maintaining high
recall (sensitivity). Similar ideas in the context of maxent were proposed recently
by Goodman in [5].

We explicitly model time: each user is associated with a set of sessions, and each
session is modeled as a time sequence of document accesses. We present a maxent
model that effectively estimates the probability of the next visited document ID
(DID) given the most recently visited DID (“bigrams”) and past indicative DIDs
(“triggers”). To our knowledge, this is the first application of maxent for collab-
orative filtering, and one of the few published formulations that makes accurate
recommendations in the context of a dynamic user session [3, 15]. We perform
offline empirical tests of our recommender and compare it to competing models.
The comparison shows our method is quite accurate, outperforming several other
less-expressive models.



The rest of the paper is organized as follows. In Section 2, we describe the log data
from ResearchIndex and how we preprocessed it. Section 3 presents the greedy
algorithm for clustering the documents and discusses how the clustering helps to
decompose the original prediction task. In Section 4, we give a high-level description
of our maxent model and the features we used for its learning. Experimental results
and comparisons with other models are discussed in Section 5. In Section 6, we draw
conclusions and describe directions for future work.

2 Preprocessing the ResearchIndex data

Each document indexed in ResearchIndex is assigned a unique document ID (DID).
Whenever a user accesses the site with a cookie-enabled browser, (s)he is identified
as a new or returning user and all activity is recorded on the server side with a
unique user ID (UID) and a time stamp (TID). We obtained a log file that recorded
approximately 3 month worth of ResearchIndex data that can roughly be viewed
as a series of requests < TID, UID, DID >.

In the first processing step, we aggregated the requests by the UID and broke
them into sessions. For a fixed UID, a session is defined as a sequence of document
requests, with no two consecutive requests more than T seconds apart. In our
experiments we chose T = 300, so that if a user was inactive for more than 300
seconds, his next request was considered to mark a start of a new session.

The next processing step included heuristics, such as identifying and discarding the
sessions belonging to robots (they obviously contaminate the browsing patterns of
human users), collapsing all same consecutive DID accesses into a single instance of
this DID (our objective was to predict what interests the user beyond the currently
requested document), getting rid of all DIDs that occurred less than two times in
the log (for two or fewer occurrences, it is hard to reliably train the system to
predict them and evaluate performance), and finally discarding sessions containing
only one document.

3 Dimensionality Reduction Via Clustering

Even after the log is processed, the data still remains high-dimensional (62,240
documents), and sparse, and hence still hard to model. To solve these problems we
clustered the documents. Since our objective was to predict the instantaneous user
interests, among many possibilities of performing the clustering we chose to cluster
based on user navigation patterns.

We scanned the processed log once and for each document Dprev accumulated the
number of times the document Dnext was requested immediately after Dprev ; in
other words, we computed the first-order Markov statistics or bigrams. Based on
the user navigation patterns encoded in bigrams, the greedy clustering is done as
shown in the following pseudocode:

Input: Bigrams B[i, j]; Number of Clusters C;
Output: Set S of C Clusters.
Algorithm:

0. nC = 0;
1. set n = argmaxi,jB[i, j] // max number of transitions



2. for all docs i, j such that B[i, j] == n do // all docs with n transitions
3. if (i.assigned == −1 and j.assigned == −1 and nC < C)
4. S[nC ].push(i);
5. S[nC ].push(j);
6. i.assigned = j.assigned = nC ;
7. nC + +; // new cluster for i and j
8. else if (i.assigned ! = −1 and j.assigned == −1)
9. S[i.assigned].push(j);
10. j.assigned = i.assigned; // j goes to cluster of i
11. else if (i.assigned == −1 and j.assigned ! = −1)
12. S[j.assigned].push(i);
13. i.assigned = j.assigned; // i goes to cluster of j
14. end if
15. B[i, j] = −1;
16. end for
17. if (n ≥ 2) goto 1
18. Return S

The algorithm starts with empty clusters and then cycles through all documents
picking the pairs of documents that have the current highest joint visitation fre-
quency as prompted by a bigram frequency (lines 1 and 2). If both documents in
the selected pair are unassigned, a new cluster is allocated for them (lines 3 through
7). If one of the documents in the selected pair has been assigned to one of the pre-
vious clusters, the second document is assigned to the same cluster (lines 8 through
14). The algorithm repeats for a lower frequency n, as long as n ≥ 2.

After the clustering, we can assume that if the user requests a document from the
i-th cluster S[i], he is considerably more likely to prefer a next document from S[i]
rather than from S[j], j 6= i, i.e. P = P (Dnext ∈ S[i] | Dprev ∈ S[i], Data) � 1−P .
This assumption is reasonable because by construction clusters represent densely
connected (in terms of traffic) components, and the traffic across the clusters is small
compared to the traffic within each cluster. In view of this observation, we broke
individual user sessions down into subsessions, where each subsession consisted of
documents belonging to the same cluster. The problem was thus reduced to a series
of prediction problems for each cluster.

We studied the clusters by trying to find out if the documents within a cluster are
topically related. We ran code previously developed at NEC Labs [4] that uses
information gain to find the top features that distinguish each cluster from the rest.
Table 1 shows the top features for some of the created clusters. The top features
are quite consistent descriptors, suggesting that in one session a ResearchIndex user
is typically interested in searching among topically-related documents.

4 Trigger MaxEnt

In this paper, we model P (Dnext|H(U), Data) as a maxent distribution, where
Dnext is the identity of the document that will be next requested by the user U ,
given the history H(U) and the available Data for all other users. This choice of the
maxent model is natural since our intuition is that all of the previously requested
documents in the user session influence the identity of Dnext. It is also clear that



Table 1: Top features for some of the clusters.

Cluster 1 agent, agents, behavior, good, autonomous, the agent, an agent, ...

Cluster 2 training, clustering, distance, classification, kernel, svm, support, ...,
Cluster 3 Web, documents, query, the Web, queries, pages, Web, engines, ...

Cluster 4 packet, fast, routing, address, the network, ip, packets, speed, ...

Cluster 5 transform, channel, coding, rate compression, images, coefficients, ...

Cluster 6 detection, agents, security, intrusion detection, host, ...

Cluster 7 traffic, rate, packet, long, wide scheduling, service, qos, ...

Cluster 8 mobile, wireless, protocol, service, services, location, ...

we cannot afford to build a high-order model, because of the sparsity and high-
dimensional data, so we need to restrict ourselves to models that can be reliably
estimated from the low-order statistics.

Bigrams provide one type of such statistics. In order to introduce long term de-
pendence of Dnext on the documents that occurred in the history of the session,
we define a trigger as a pair of documents (a, b) in a given cluster such that
P (Dnext = b|a ∈ H) is substantially different from P (Dnext = b). To measure
the quality of triggers and in order to rank them we computed mutual information
between events E1 = {Dnext = b} and E2 = {a ∈ H}.

The set of features, together with maxent as an objective function, can be shown
to lead to the following form of the conditional maxent model

P (Dnext|H) =
1

Z(H)
exp[

S∑

s=1

λsFs(D
next, H)], (1)

where Z(H) is a normalization constant ensuring that the distribution sums to 1.

The set of parameters {λ} needs to be found from the following set of equations
that restrict the distribution P (Dnext|H) to have the same expected value for each
feature as seen in the training data:

∑

H

∑

D

P (D|H)Fs(D, H) =
∑

H

Fs(D(H), H), s = 1, . . . , S, (2)

where the LHS represents the expectation (up to a normalization factor) of the
feature Fs(D, H) with respect to the distribution p(D|H) and the RHS is the actual
frequency (up to the same normalization factor) of this feature in the training
data. There exist efficient algorithms for finding the parameters {λ} (e.g. improved
iterative scaling [11]) that are known to converge if the constraints imposed on P

are consistent.

Under fairly general assumptions, the maxent model can also be shown to be a
maximum likelihood model [11]. Employing a Gaussian prior with a zero mean on
parameters λ yields a maximum aposteriori solution that has been shown to be
more accurate than the related maximum likelihood solution and other smoothing
techniques for maxent models [2]. We use Gaussian smoothing in our experiments
with a maxent model.



Table 2: Average number of hits h̄ and height H̄ of predictions across the clusters
for different ranges of heights and using various models. The boxed numbers are
the best values across all models.

Model 0 ≤ H < 5 0 ≤ H < 10 0 ≤ H < 15 0 ≤ H < 20 0 ≤ H < 25
Mult. h̄ 48.78 67.94 80.94 90.93 98.54
1 c. H̄ 1.437 2.947 4.390 5.773 7.026

Mult. h̄ 95.49 120.52 132.07 138.89 143.33

25 c. H̄ 1.421 2.503 3.312 3.975 4.528
Mark. h̄ 91.39 115.68 123.44 126.26 127.57
1 c. H̄ 1.959 3.007 3.571 3.875 4.063

Mark. h̄ 89.75 114.49 122.57 125.61 127.14
25 c. H̄ 1.959 3.047 3.646 3.972 4.191

Maxent h̄ 111.95 130.35 138.18 142.56 145.55
no sm. H̄ 1.510 2.296 2.858 3.303 3.694

Maxent h̄ 112.68 130.86 138.53 142.85 145.78

w. sm. H̄ 1.476 2.258 2.810 3.248 3.633

Corr. h̄ 111.02 132.87 140.96 144.99 147.34
H̄ 1.973 2.801 3.340 3.726 4.021

5 Experimental Results and Comparisons

We compared the trigger maxent model with the following models: mixture of
Markov models (1 and 25 components), mixture of multinomials (1 and 25 com-
ponents) and the correlation method [1]. The definitions of the models can be
found in [9]. The maxent model came in two flavors: unsmoothed and smoothed
with a Gaussian prior, with 0 mean and fixed variance 2. We did not optimize the
adjustable parameters of the models (such as the number of components for the
mixture or the variance of the prior for maxent models) or the number of clusters
(1000).

We chronologically partitioned the log into roughly 8 million training requests (cov-
ering 82 days) and 2 million test requests (covering 17 days). We used the average
height of predictions on the test data as a main evaluation criteria. The height of a
prediction is defined as follows. Assuming that the probability estimates P (D|H)
are available from a model P for a fixed history H and all possible values of D, we
first sort them in the descending order of P and then find the distance in terms of
the number of documents to the actually requested D (which we know from the test
data) from the top of this sorted list. The height tells us how deep into the list the
user must go in order to see the document that actually interests him. The height
of a perfect prediction is 0, the maximum (worst) height for a given cluster equals
the number of documents in this cluster. Since heights greater than 20 are of little
practical interest, we binned the heights of predictions for each cluster. For binning
purposes we used height ranges [5K, 5(K+1)) for K = 0, . . . , 4. Within each bin we
also computed the average height of predictions. Thus, the best performing model
would place most of the predictions inside the bin(s) with low value(s) of K and
within those bins the averages would be as low as possible.



Table 3: Average time per 1000 predictions and average memory used by various
models across 1000 clusters.

Time, s Memory, KBytes
Mult., 0.0049 0.5038

Mult., 25 0.0559 12.58
Markov, 1 0.0024 1.53
Markov, 25 0.0311 68.23

Maxent, no sm. 0.0746 90.12
Maxent, w. sm. 0.0696 90.12

Correlation 7.2013 17.26

Table 2 reports the average number of hits each model makes on average in each of
the bins, as well as the average height of predictions within the bin. The smoothed
maxent model has the best average height of predictions across the bins and scores
roughly the same number of hits in each of the bins as the correlation method. The
mixture of Markov models with 25 components evidently overfits on the training
data and fails to outperform a 1 component mixture. The mixture of multinomials
is quite close in quality to, but still not as good as, the maxent model with respect
to both the number of hits and the height predictions in each of the bins.

In Table 3, we present comparison of various models with respect to the average
time taken and memory required to make a prediction. The table clearly illustrates
that the maxent model (i.e., the model-based approach) is substantially more time
efficient than the correlation (i.e., the memory-based approach), even despite the
fact that the model takes on average more memory. In particular, our maxent
approach is roughly two orders of magnitude faster than the correlation.

6 Conclusions and Future Work

We have described a maxent approach to generating document recommendations
in ResearchIndex. We addressed the problem of sparse, high-dimensional data by
introducing a clustering of the documents based on the user navigation patterns.
A particular advantage of our clustering is that by its definition the traffic across
the clusters is small compared to the traffic within the cluster. This advantage
allowed us to decompose the original prediction problem into a set of problems
corresponding to the clusters. We also demonstrated that our clustering produces
highly interpretable clusters: each cluster can be assigned a topical name based on
the top-extracted features.

We presented a number of models that can be used to solve a document prediction
problem within cluster. We showed that the maxent model that combines zero and
first order Markov terms as well as the triggers with high information content pro-
vides the best average out-of-sample performance. Gaussian smoothing improved
results even further.

There are several important directions to extend the work described in this paper.
First, we plan to perform “live” testing of the clustering approach and various
models in ResearchIndex. Secondly, our recent work [10] suggests that for difficult
prediction problems improvement beyond the plain maxent models can be sought



by employing the mixtures of maxent models. We also plan to look at different
clustering methods for documents (e.g., based on the content or the link structure)
and try to combine prediction results for different clusterings. Our expectation is
that such combining could yield better accuracy at the expense of longer running
times. Finally, one could think of a (quite involved) EM algorithm that performs
the clustering of the documents in a manner that would make prediction within
resulting clusters easier.
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