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Abstract

We investigate the use of graphical models in two fundamental
problems of group coordination: (1) reaching a consensus on beliefs,
and (2) allocating risk. On the negative side, we prove that under
mild assumptions, even if every member of a group agrees on a graph-
ical topology, no method of combining their beliefs can maintain that
structure. Even weaker conditions rule out local aggregation within
the conditional probability tables of the graphical models. We show
that the linear opinion pool (LinOP) and the logarithmic opinion pool
(LogOP) are both NP-hard to compute, even for queries easy to com-
pute for every individual. In terms of risk sharing, we show that secu-
rities markets structured like graphical models are generally no more
tractable than complete securities markets, the unattainable gold stan-
dard for optimal risk allocation. On the positive side, we show that if

1



Draft manuscript; Please do not distribute

probabilities are combined with LogOP, then commonly-held Markov
independencies are maintained. We give procedures for constructing
a graphical model of LogOP-aggregated beliefs, and from this com-
puting any LogOP query with time complexity comparable to that
of exact Bayesian inference. We give conditions under which optimal
risk sharing can be obtained more efficiently by structuring a secu-
rities market like a graphical model. One sufficient condition is for
all agents’ risk-neutral independencies to agree with the independen-
cies encoded in the securities market. A second sufficient condition is
agreement on Markov independencies among agents all with constant
absolute risk aversion.

1 Introduction

Mathematical models of group coordination are well studied across a num-
ber of disciplines, including statistics, decision theory, economics, political
science, and artificial intelligence. Common to nearly all formal treatments
is a hobbling and unsettling number of paradoxes and impossibility theo-
rems. We focus on two common forms of group coordination: belief aggre-
gation and risk allocation. Belief aggregation is commonly framed as the
task of extracting a summarized report of the opinions of a panel of experts,
where “opinions” are in the form of subjective probability assessments. More
formally, given N agents, indexed i = 1, . . . , N , each with a subjective prob-
ability distribution Pri over a state space Ω, an opinion pool f is a function
that aggregates the agents’ beliefs into a single belief, denoted Pr0:

Pr0 ≡ f(Pr1, Pr2, . . . , PrN). (1)

The two most common opinion pool functions are (1) the linear opinion pool
(LinOP), or weighted algebraic average, and (2) the logarithmic opinion pool
(LogOP), or weighted geometric average.

Risk allocation is another important group activity, perhaps best exem-
plified by the insurance industry, where risk averse individuals give up a
small amount of their expected future wealth in return for a decrease in the
variance of their future wealth. Since the insurance company is less risk
averse than the individual, the exchange is mutually beneficial. More gener-
ically, agents can reallocate their risks arbitrarily by exchanging securities,
or state-contingent payoffs: for example, the sender of a package might pur-
chase the state-contingent payoff “$100 if the package is lost” from a courier
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service. An allocation of risk is said to be Pareto optimal if all other possible
allocations are worse for at least one of the agents (ignoring ties).

We examine the extent that graphical models can facilitate belief aggre-
gation and risk allocation. Graphical models utilize a language for encoding
independencies among random variables. The great power of graphical mod-
els is their ability to efficiently encode joint probability distributions when
there is sufficient structural independence among variables. How can graph-
ical models help in belief aggregation or risk allocation? The most direct
way is by making whatever aggregation or allocation is required more com-
putationally efficient, in terms of both time and space complexity. In this
regard, we derive both negative and positive results. For belief aggregation
we show that the computational savings enjoyed by representing each indi-
vidual’s probability distribution graphically in general does not carry over
to the aggregate distribution, regardless of the aggregation function used.
Moreover, for the LinOP and LogOP, computing the aggregate cannot be
(trivially) split up into local computations on graph modules: in fact, in
both cases the computation is NP-hard. On the positive side, we show that,
although the LogOP does not maintain all independencies, it does maintain
Markov independencies, which correspond directly to a type of graphical
model called a Markov network (and the independencies in a moralized and
triangulated Bayesian network “join tree”). We give a corresponding algo-
rithm for computing the LogOP that is comparable in time complexity to
exact Bayesian inference: exponential in the largest clique size rather than
the graph size, in some cases providing an exponential speedup.

The picture for risk sharing is similarly mixed. Securities markets can be
structured in analogy to graphical models, leading to a potentially exponen-
tial savings in the number of markets required to support a Pareto optimal
equilibrium. However, because independencies are not preserved in aggrega-
tion, in general the securities market graph must be fully connected, and is
thus no less intractable than a complete securities market, the unattainable
gold standard for optimal risk allocation. On the other hand, we provide
some (fairly strong) conditions under which optimal risk sharing can be ob-
tained more efficiently. One sufficient condition is for all agents’ risk-neutral
independencies to agree with the independencies encoded in the securities
market. A second sufficient conditions is agreement on Markov independen-
cies among agents all with constant absolute risk aversion.

The second way that graphical models might help in a group coordination
setting is more subtle. Most impossibility theorems arise when the space of
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possible inputs is completely generic (i.e., the universal domain). Although
graphical models can describe a rich set of independence relations, they can-
not describe all possible types of independencies. So it is conceivable that
some impossibility theorems might be circumvented when inputs must take
a form representable by a graphical model. This would not be a terribly
severe restriction, since the types of independencies representable by graph-
ical models are generally regarded as very diverse, natural, and reasonable.
Unfortunately, although we show that restricting inputs to graphical repre-
sentations does circumvent at least one impossibility theorem, it does so in
a fairly trivial way, and we further find that most impossibility theorems
continue to hold. Moreover, new impossibility theorems arise that confound
the conventional wisdom of how people expect graphical models to combine.

This paper is organized as follows. Section 2 presents all the requisite
background material and introduces our notation. Section 3 describes the
use of graphical models for belief aggregation. Section 4 explores the value
of graphical models for structuring securities markets and facilitating risk
sharing. We conclude in Section 5.

2 Background and Notation

We consider a group of N agents, indexed i = 1, 2, . . . , N , each with a sub-
jective probability distribution Pri over states of the world and a utility
function ui for money. Denote the set of all possible states of the world as
Ω = {ω1, ω2, . . .}. The ω are mutually exclusive and exhaustive.

State is often more concisely and naturally characterized as the set of out-
comes of events. Denote the set of modeled events as Z = {A1, A2, . . . , AM}.
Underlying M arbitrary events is a state space Ω of size |Ω| = 2M , consist-
ing of all possible combinations of event outcomes. Conversely, any set of
states can be factored into a set of M = dlg |Ω|e events. Without further
assumption, the two representations are equivalent in both expressivity and
size, although the event factorization may be more natural. In most of what
follows, the events {Aj} are the focus of attention, with Ω the implied joint
outcome space. We refer to the {Aj} as the primary events, so as to distin-

guish them from the other 22M

− M possible sets of states, each of which is
also an event.
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2.1 Decision Making Under Uncertainty

In general, an agent’s utility is defined over the cross product of available
actions and possible states. We assume here that utility arises from an un-
derlying utility for money. If agent i’s utility for µ dollars is u(µ), then its
utility U for a particular action a is its expected utility for money,

Ui(a) = Ei

[

ui

(

Υ
〈ω〉
i

)]

=
∑

ω∈Ω

Pri(ω)ui

(

Υ
〈ω〉
i

)

, (2)

where Υ
〈ω〉
i is agent i’s wealth in dollars when action a is taken in state ω

(the dependence of Υ
〈ω〉
i on a is implicit). Agent i’s decisions are made by

maximizing expected utility, or choosing the action a that maximizes (2).
We assume throughout that utility increases monotonically with wealth.

Local risk aversion at µ, denoted ri(µ), is defined as ri(µ) ≡ −u′′
i (µ)/u′

i(µ).
Agent i is risk-averse if ri(µ) > 0 for all µ, or, equivalently, if ui is every-
where concave. Under this condition, the agent always prefers a guaranteed
payment equal to the expected value of a lottery rather than the lottery it-
self, thus exhibiting an “aversion” to gambling. The agent is risk-neutral if
ri(µ) = 0 for all µ, or ui is linear; in this case, maximizing (2) coincides with
maximizing expected payoff.

2.2 Risk-Neutral Probability

Notice that an outside observer, privy only to agent i’s chosen actions, cannot
uniquely discern either the agent’s belief or its utility: the two quantities are
inextricably linked (Kadane & Winkler, 1988). Any one of a continuous fam-
ily of belief–utility pairs offers an equally valid rationalization for the agent’s
actions. That is, for any function f(ω), subjective probabilities proportional

to Pri(ω)f(ω) matched with utilities ui

(

Υ
〈ω〉
i

)

/f(ω) result in strategically

equivalent utilities for actions Ui(a).
Risk-neutral probabilities are defined as

PrRN
i (ω) ∝ Pri(ω)u′

i

(

Υ
〈ω〉
i

)

, (3)

where u′
i is the derivative of utility (Nau, 1995). Agent i’s observable behav-

ior, manifested as actions, is indistinguishable from that of a hypothetical
agent with transformed probabilities PrRN

i (ω) and reciprocally transformed

utility uRN
i (µ) ≡ ui(µ)/u′

i

(

Υ
〈ω〉
i

)

. It turns out that the observer can uniquely
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assess agent i’s risk-neutral probabilities. In fact, all standard elicitation
procedures designed to reveal agent i’s beliefs based on monetary incentives
(de Finetti, 1974; Winkler & Murphy, 1968)—for example, querying the
prices at which the agent would buy or sell various lottery tickets—essentially
reveal PrRN

i , and not Pri (Kadane & Winkler, 1988). The agent’s observable
beliefs are in effect its risk neutral probabilities, not its true probabilities.

2.3 Opinion Pools

A variety of authors have proposed or advocated a corresponding variety of
aggregation functions of the form (1); Genest and Zidek (1986) and French
(1985) provide comprehensive surveys. Three approaches are generally dis-
tinguished. The first assumes a single Bayesian decision maker h (real or fic-
titious, within or outside the group), called the supra Bayesian, with a joint
distribution over all events and all participants’ beliefs. The supra Bayesian
updates its beliefs via Bayes’s rule, given the “evidence” of everyone else’s
beliefs. The resulting posterior is taken to be the consensus belief.

The second approach is to apply a prespecified function, usually some
form of weighted average, that maps any set of probability distributions to a
singleton. Note that some such functions can be interpreted as the updating
procedure of a supra Bayesian. Each pooling function is usually justified
axiomatically, by assuming a “reasonable” set of properties of the aggregate
distribution. The two most common and well-studied aggregation functions
are the linear and logarithmic opinion pools (LinOP, LogOP). The LinOP is
a weighted arithmetic mean of the members’ probabilities,

Pr0(ω) =
N

∑

i=1

αiPri(ω), (4)

and the LogOP is a normalized, weighted geometric mean,

Pr0(ω) ∝
N
∏

i=1

[Pri(ω)]αi , (5)

where the αi are called expert weights, usually nonnegative numbers that sum
to one. The LinOP and LogOP can actually be characterized as two instances
of a parameterized family of weighted aggregation functions (Cooke, 1991).
A third approach to pooling opinions is based on maximum entropy infer-
ence. The consensus is the unique probability distribution that maximizes
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Shannon entropy, chosen from among the distributions that are consistent
with all available information, including the experts’ beliefs, their past per-
formance, and/or dependencies among experts (Levy & Delic, 1994; Myung,
Ramamoorti, & Bailey, 1996).

The debate over which aggregation method is best continues to rage
(Benediktsson & Swain, 1992; Cooke, 1991; Jacobs, 1995; Ng & Abramson,
1992; Winkler, 1986). Several authors (most emphatically Lindley (1985,
1988)) argue that the supra Bayesian approach is superior, as it is grounded
in standard normative Bayesian theory (Clemen & Winkler, 1993; Morris,
1974, 1977; Rosenblueth & Ordaz, 1992; West & Crosse, 1992; Winkler,
1981).

Attempts to justify more symmetric opinion pools often proceed by pos-
ing axioms on the combination function, and arguing that they represent
desirable properties (Dalkey, 1975; Genest, 1984c, 1984b, 1984a; Genest &
Zidek, 1986; Genest, McConway, & Schervish, 1986; Genest & Wagner, 1987;
Wagner, 1984). Many of these properties seem reasonable, but disagreement
persists on which are essential.1 Researchers have proved that certain pool-
ing formulae are implied by certain sets of properties. We begin with two
seemingly incontrovertible assumptions.

Property 1 (Unanimity (UNAM)) If Prh(ω) = Pri(ω) for all agents h
and i, and for all states ω ∈ Ω, then Pr0(ω) = Pr1(ω).

Property 2 (Nondictatorship (ND)) There is no single agent i such that
Pr0(ω) = Pri(ω) for all ω ∈ Ω, and regardless of the agents’ beliefs.

UNAM states that if everyone’s assessments are in complete agreement, then
the consensus agrees as well. ND simply ensures that what is inherently a
multiagent problem is not reduced to the single-agent case.

Property 3 (Marginalization property (MP)) Let E be an arbitrary
event, that is, any subset of Ω. Then,

f(Pr1, Pr2, . . . , Prn)(E) =

f(Pr1(E), Pr2(E), . . . , Prn(E)).

1For example, Lindley (1985) regards the so-called marginalization property as an “ad-
hockery” while Cooke (1991) characterizes any consensus function that does not respect
it as “downright queer”.
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Property 4 (External Bayesianity (EB)) Let E and F be arbitrary events.
Then,

f(Pr1, Pr2, . . . , Prn)(E|F ) =

f(Pr1|F, Pr2|F, . . . , Prn|F )(E).

MP and EB require consistency for probabilistic operations performed before
and after pooling. MP states that we obtain the same probability for an
event E whether we pool the opinions first, and then compute Pr0(E) =
∑

ω∈E Pr0(ω), or if we first compute Pri(E) =
∑

ω∈E Pri(ω) for each agent
i, and then pool their opinions only over E. Similarly, EB holds that we
obtain the same Pr0(E|F ) whether we combine opinions first and condition
on F second, or condition on F first and combine opinions second. It has
been shown that any f satisfying both MP and UNAM is a LinOP (Genest,
1984c), and any satisfying EB and UNAM is a LogOP (Genest, 1984a).
Genest (1984b) also shows that f cannot simultaneously satisfy MP, EB,
UNAM, and ND.

Property 5 (Proportional dependence on states (PDS))

Pr0(ω) ∝ f(Pr1(ω), Pr2(ω), . . . , Prn(ω)).

PDS is sometimes called independence of irrelevant states, or termed a like-
lihood principle. It assures that the consensus likelihood ratio between two
states does not depend on the agents’ assessments of any other “irrelevant”
state. The LinOP, LogOP, and most other proposed opinion pools satisfy
PDS.

Property 6 (Independence preservation property (IPP)) Let E and
F be arbitrary events. If Pri(E|F ) = Pri(E) for all agents i, then Pr0(E|F ) =
Pr0(E).

IPP requires that all unanimously held independencies are preserved in the
consensus. Advocates of IPP reason that identifying the independencies in
a model is central to understanding the underlying phenomena, and that
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complete agreement on this dimension should be embraced. On the other
hand, Genest and Wagner (1987) make a compelling case against the use of
IPP by proving that no aggregation function whatsoever can satisfy it along
with PDS and ND, when |Ω| ≥ 5.

Another point of contention is how best to determine the expert weights.
In most cases they are chosen in an ad hoc manner to encode some measure of
confidence, reliability, or importance (Benediktsson & Swain, 1992; French,
1985; Winkler, 1968). Some more formal methods to derive weights have been
proposed, by making assumptions concerning the form of, or interdependence
among, participants’ beliefs (Cooke, 1991; Degroot & Mortera, 1991; Jacobs,
1995; Morris, 1977), or through iterative self-weighting procedures (Degroot,
1974). Little work, in any of the traditional categories of opinion pools,
explicitly addresses truth incentives for reporting either self-assessed weights
or the probabilities themselves.

2.4 Securities Markets for Allocating Risk

Under uncertainty, risk-averse agents will desire to hedge or insure against
their risks by distributing wealth across states. For example, insuring the
delivery of a package effectively transfers wealth from the package-received
state to the package-lost state. The Arrow-Debreu securities market is the
fundamental theoretical framework in economics and finance for resource al-
location under uncertainty (Arrow, 1964; Dreze, 1987; Mas-Colell, Whinston,
& Green, 1995). A security, denominated in money or other exchangeable
good, pays off variously contingent upon the realization of an uncertain state.
Let 〈A〉 denote a security that pays off one dollar if and only if the event
A occurs. If the price of this security is p〈A〉 per unit, then agent i’s deci-
sion to purchase x

〈A〉
i units is equivalent to accepting a lottery with payoff

(1− p〈A〉)x
〈A〉
i if A occurs, and −p〈A〉x

〈A〉
i otherwise. Positive x

〈A〉
i indicates a

quantity to buy, and negative x
〈A〉
i a quantity to sell.

In a market of S such securities, let p = 〈p〈1〉, p〈2〉, . . . , p〈S〉〉 denote the

securities’ prices, and xi = 〈x〈1〉
i , x

〈2〉
i , . . . , x

〈S〉
i 〉 denote the quantities of the

securities held by agent i. Agent i’s utility for securities is its expected utility
for money (2), where the agent’s choice of actions is how much to buy or sell
of each security.

Agents trade securities with each other prior to revelation of the world
state. In an economy of N agents, each continually maximizing (2), prices
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adjust until all buy orders match with sell orders for all securities. A market
is in competitive equilibrium at prices p if and only if

N
∑

i=1

xi(p) = 0, (6)

where xi(p) is agent i’s optimal demand vector at prices p.
A securities market is termed complete if it contains at least |Ω| − 1

linearly independent securities. Such a market guarantees, under classical
assumptions, that equilibrium entails a Pareto optimal, or efficient, allocation
of risk.

A conditional security 〈A1|A2〉 pays off contingent on A1 and conditional
on A2. That is, if A2 occurs, then it pays out exactly as 〈A1〉; on the other
hand, if Ā2 occurs, then the bet is called off and any price paid for the security
is refunded (de Finetti, 1974). The canonical complete market consists of one
security paying out in each state of nature. In general, though, any set of
securities (possibly including conditionals) with a payoff-by-state matrix of
rank |Ω| − 1 is complete.

When one unit of each security pays out one dollar, the equilibrium prices
in a securities market form a coherent probability distribution. For example,
p〈A1〉 = p〈A1A2〉 + p〈A1Ā2〉, or p〈A1A2〉 = p〈A1|A2〉p〈A2〉. In fact, the equilibrium
prices coincide with the agents’ risk-neutral probabilities (3) for the avail-
able securities, which must be in complete agreement (Dreze, 1987; Nau &
McCardle, 1991). Derived formally in Section 4.1, we simply sketch the intu-
ition here. Since a risk-neutral agent buys 〈Aj〉 if p〈Aj〉 < Pri(Aj) (it simply
maximizes expected payoff), then any agent buys 〈Aj〉 if p〈Aj〉 < PrRN

i (Aj).
Similarly, the agent sells if p〈Aj〉 > PrRN

i (Aj). If two agents h and i have dif-
fering risk neutral probabilities—that is, PrRN

h (Aj) 6= PrRN
i (Aj)—then there

is an intermediate price at which they are both willing to trade. It follows
that, at equilibrium, when by definition opportunities for exchange have been
exhausted, all agents’ risk neutral probabilities agree across available securi-
ties. Furthermore, since offers to buy and sell must match, the equilibrium
prices equal these consensus probabilities.

There are two, largely inseparable, reasons for agents to trade in securi-
ties: to insure against risk (“hedge”) and to profit from perceived mispricings
(“speculate”). The more averse to risk, the more the former consideration
dominates an agent’s decision making. On the other hand, risk-neutrality—
the limit of diminishing risk aversion—is synonymous with pure speculation.
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These two behaviors are aligned with the two central roles of securities mar-
kets in the theory of economics under uncertainty. The first, as mentioned,
is to support the reallocation of risk. The second is to aggregate and dis-
seminate information. Agents that disagree on the likelihood of states may
seek to exchange securities at prices that yield, according to each’s subjective
viewpoint, an increase in expected returns. Moreover, each agent is privy,
albeit implicitly, to the evidence gathered by other agents (perhaps at great
cost) via fluctuations in price.

2.5 Graphical Models

A joint probability distribution can often be represented more compactly
as a graphical model (Darroch, Lauritzen, & Speed, 1980). Conciseness is
achieved by exploiting conditional independence among the primary events.
Let CI[Aj, W, X] be shorthand for Pr(Aj|WX) = Pr(Aj|W ), indicating that
Aj is conditionally independent of the set of events X, given another set W .
Consider the event Ak ∈ Z, with predecessors pred(Aj) ≡ {A1, A2, . . . , Ak−1}.
Suppose that, given the outcomes of a subset pa(Ak) ⊆ pred(Ak) of its
predecessors—called Ak’s parents—the event Ak is conditionally independent
of all other preceding events, or CI[Ak,pa(Ak),pred(Ak) − pa(Ak)]. This
structure can be depicted graphically as a directed acyclic graph (DAG): each
event is a node in the graph, and there is a directed edge from node Aj to
node Ak if and only if Aj is a parent of Ak. We also refer to Ak as the child
of Aj. A DAG has no directed cycles and thus defines a partial order over
its vertices. We assume without loss of generality that the event indices are
consistent with this partial ordering; in other words, if Aj is a predecessor of
Ak then j < k. We can write the joint probability distribution in a (usually)
more compact form:

Pr(A1A2 · · ·AM) =
M
∏

k=1

Pr(Ak|pa(Ak)).

For each event Ak, we record a conditional probability table (CPT), which con-
tains probabilities Pr(Ak|pa(Ak)) for all possible combinations of outcomes
of events in pa(Ak). Thus, it is possible to implicitly represent the full joint

with O
(

M · 2max{q(k)}
)

probabilities, instead of 2M−1, where q(k) = |pa(Ak)|
is the number of parents of Ak.
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A Markov network (MN) is another graphical language for modeling con-
ditional independence and for implicitly describing joint distributions (Whit-
taker, 1990; Darroch et al., 1980). Events are again associated with nodes
in a graph, and edges encode probabilistic dependencies. The underlying
structure of a MN is an undirected graph. Given the outcomes of its direct
neighbors, an event Aj is conditionally independent of every other event in
the network, not just preceding events. The neighbors of an event form a
Markov blanket around it, “shielding” it from direct influence from the rest
of the events (Pearl, 1988).

A Markov independence is a special type of conditional independence
(Darroch et al., 1980; Pearl, 1988; Whittaker, 1990). The node Aj and
the set of nodes X ⊆ Z − Aj are Markov independent, given another set
W ⊆ Z −X −Aj, if CI[Aj, W, X] and Aj ∪W ∪X = Z. Recall that Z is the
set of all modeled events.

The Markov blanket of a node in a BN consists of its direct parents, its
direct children, and its children’s direct parents (Pearl, 1988). Therefore a
BN can be converted into a MN by moralizing the network, or fully con-
necting (“marrying”) each node’s parents, and dropping edge directionality
(Lauritzen & Spiegelhalter, 1988; Neapolitan, 1990). A MN can be converted
into a BN by filling in or triangulating (Kloks, 1994) the graph, and adding
directionality according to the fill-in ordering (Jensen, 1996; Lauritzen &
Spiegelhalter, 1988; Neapolitan, 1990; Pearl, 1988). Both transformations
are sound with respect to independence, but neither is complete.

A DAG is an independency map, or an I-map, of a probability distribution
Pr if every independency implicit in the graph holds within Pr (Pearl, 1988).
Note that a complete graph is a trivial I-map of any distribution over Ω.

A DAG is decomposable if there is an edge between every two nodes
that share a common child (Chyu, 1991; Darroch et al., 1980; Pearl, 1988;
Shachter, Andersen, & Poh, 1991). Trees are a subset of decomposable DAGs,
since every node has at most one parent. Complete graphs are also decom-
posable since every two nodes are connected. Any BN can be made decom-
posable by reorienting some edges and introducing new edges where needed
(Chyu, 1991; Shachter et al., 1991). A two step procedure of moraliza-
tion plus fill-in (triangulation) will render a BN decomposable. Finding the
smallest decomposable representation (finding the optimal fill-in ordering) is
NP-hard, and even the smallest decomposable representation can be expo-
nentially larger than the original BN. Still, the decomposable representation
can be exponentially more compact than the full joint distribution. The in-
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dependencies encoded in a decomposable BN are all Markov independencies
(Pearl, 1988).

3 Graphical Models for Belief Aggregation

In this section, we address the problem of representing aggregate beliefs con-
cisely. The implications of results in this section for securities markets will
be examined in Section 4.

We presume that each agents’ beliefs are given as a graphical model,
and that the combined beliefs are to be represented as well with a graph-
ical model. Two intuitively reasonable assumptions in this context, made
a priori by other authors, are (1) if all agents agree on a single topology,
then that structure should be maintained, and (2) probability aggregation
can be isolated within each conditional probability table (CPT). Section 3.2
demonstrates that each of these properties leads to an impossibility theorem
when combined with other reasonable, oft-invoked assumptions. On a more
positive note, Section 3.3 shows that the logarithmic opinion pool (LogOP)
maintains all agreed-upon Markov independencies, and describes procedures
for constructing consensus Markov networks (MNs) and consensus Bayesian
networks (BNs) that are consistent with the LogOP. Section 3.4 presents
an algorithm that can, in some cases, compute the LogOP exponentially
faster than the brute force approach. That section also characterizes the
computation complexity of the linear opinion pool (LinOP) and the LogOP.
Section 3.1 defines the properties necessary to state the various impossibility
and possibility results appearing later in the section.

3.1 Property Definitions

Recall the independence preservation property (IPP), defined in Section 2.3.
For an aggregation function f to satisfy IPP, any independencies that are
agreed-upon by all agents must be maintained within the consensus distri-
bution. Genest and Wagner (1987) prove that no aggregation function can
simultaneously satisfy IPP, proportional dependence on states (PDS) (Prop-
erty 5), and nondictatorship (ND) (Property 2). But one might argue that
IPP is overly strong. It requires preservation of, for example, a unanimous
independence between the events E = A3Ā7 and F = Ā2A4 ∨ A7. This kind
of independence seems of little descriptive value to a modeler, and indeed
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cannot be represented with a BN. One may be willing to forgo preserving all
independencies, being content to preserve independencies among the primary
events, A1, A2, . . . , AM . With this in mind, we define a weaker independence
property.

Property 7 (Event independence preservation property (EIPP)) If
Pri(Aj|Ak) = Pri(Aj) for all agents i, then Pr0(Aj|Ak) = Pr0(Aj).

Note that, when |Ω| = 4, the conditions IPP and EIPP are essentially equiv-
alent. In this situation, the only way for two events to be independent is if
each consists of exactly two atomic states, and if they overlap at exactly one
state (Genest & Wagner, 1987).

In Section 3.2, we see that substituting EIPP for IPP does admit a pos-
sibility that is consistent with both PDS and ND, though not a very satis-
factory one. In search of a nontrivial possibility, we define two even weaker
independence conditions.

Property 8 (Markov event independence preservation property (MEIPP))
If Pri(Aj|WAk) = Pri(Aj|W ) for all agents i and for all W ⊆ Z (including
W = ∅), then Pr0(Aj|Ak) = Pr0(Aj).

Property 9 (Non-Markov event independence preservation prop-
erty (NMEIPP)) If Pri(Aj|Ak) = Pri(Aj) for all agents i, and Prh(Aj|WAk) 6=
Prh(Aj|W ), for some agent h and some W ⊆ Z, then Pr0(Aj|Ak) = Pr0(Aj).

These two properties are purposely constructed so that EIPP ⇔ (MEIPP
∧ NMEIPP). We see in Section 3.2 that the source of the impossibility lies
entirely within the latter. Finally, we define a stronger version of the MEIPP.

Property 10 (Markov independence preservation property (MIPP))
Let W, X ⊆ Z − Aj be disjoint sets of events such that Aj ∪ W ∪ X = Z. If
Pri(Aj|WX) = Pri(Aj|W ) for all agents i, then Pr0(Aj|WX) = Pr0(Aj|W ).

The relative strengths of these various independence conditions can be
summarized as follows:

IPP ⇒ EIPP ⇔ (MEIPP ∧ NMEIPP)

MIPP ⇒ MEIPP
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Finally, we define a property that captures what seems to be a natural
assumption within the context of graphical models, advocated independently
by other authors (Matzkevich & Abramson, 1992). We say that an aggregator
satisfies the family aggregation (FA) property if it operates locally, within
each conditional probability table (CPT) of the consensus structure.

Property 11 (Family aggregation (FA))

Pr0(Aj|pa(Aj)) =

f(Pr1(Aj|pa(Aj)), . . . , PrN(Aj|pa(Aj))).

In Sections 3.2.1 and 3.2.2, we consider the implications of the properties
EIPP and FA, respectively.

3.2 Combining Bayesian Networks: Examples and Im-
possibility

3.2.1 Event Independence Preservation

We begin with an example the build the underlying intuition.

Example 1 (EIPP and the LinOP)

Suppose that two agents agree that two primary events, A1 and A2, are
independent, as pictured in Figure 1(a), but disagree on the associated marg-
inal probabilities.

For concreteness, let the first agent hold beliefs Pr1(A1) = Pr1(A2) = 0.5,
and the second Pr2(A1) = 0.8 and Pr2(A2) = 0.6. Thus,

Pr1(A1A2) = 0.25 Pr2(A1A2) = 0.48

Pr1(A1Ā2) = 0.25 Pr2(A1Ā2) = 0.32

Pr1(Ā1A2) = 0.25 Pr2(Ā1A2) = 0.12

Pr1(Ā1Ā2) = 0.25 Pr2(Ā1Ā2) = 0.08.
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Pr Pr Pr1 2 0

(a)

(b)

(c)
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1

Figure 1: Independence preservation behavior of (a) LinOP and (b)–
(d) LogOP. If two agents’ beliefs Pr1 and Pr2 have the dependency structures
shown, then the consensus Pr0 will in general have the dependency structure
depicted in column three.

Now if we apply the LinOP (4) with, say, equal weights of w1 = w2 = 0.5,
we get:

Pr0(A1A2) = 0.365

Pr0(A1Ā2) = 0.41

Pr0(Ā1A2) = 0.185

Pr0(Ā1Ā2) = 0.165.

In particular, Pr0(A1) Pr0(A2) 6= Pr0(A1A2), and so the two events are not
independent in the consensus.2 Even though the precondition of the EIPP is
met, the postcondition is not: a BN representation of the derived consensus
would have to include an edge between A1 and A2. 2

Example 2 (EIPP and the LogOP)

2As early as Yule (1903) it was recognized that averaging two distributions may mask
a commonly held independence.
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Suppose that two agents’ beliefs over two primary events are as described
in Example 1. If we apply the LogOP with equal weights, we get:

Pr0(A1A2) = 0.367007

Pr0(A1Ā2) = 0.29966

Pr0(Ā1A2) = 0.183503

Pr0(Ā1Ā2) = 0.14983.

In this case, Pr0(A1) Pr0(A2) = Pr0(A1A2), and the two events remain in-
dependent, as shown in Figure 1(b). This is not a numerical coincidence;
in fact, independence between only two events is always maintained by the
LogOP (Genest & Wagner, 1987). Now suppose that among three primary
events, both agents agree that A3 is independent of A2 given A1. That is,
both agents agree that dependencies conform to a tree structure, with A1 the
parent of both A2 and A3, as depicted in Figure 1(c). Then once again, the
LogOP will maintain this structure. One might conjecture that the LogOP
maintains all BN structures, but this is not the case. For example, suppose
that, among three primary events, the two agents agree that A1 and A2 are
mutually independent, and that A3 depends on both A1 and A2. That is,
both agents agree on the polytree structure in Figure 1(d). In this case,
when we compute the consensus with the LogOP, A1 and A2 will in general
become mutually dependent, the EIPP is not satisfied, and a consensus BN
will require an arc between the two nodes. 2

Having seen that both the LinOP and the LogOP violate the EIPP, we
seek a more general characterization of the class of functions that do obey it.
We begin by showing that Lemma 3.2 in (Genest & Wagner, 1987), originally
proved with respect to the IPP, is also applicable under the weaker EIPP.

Lemma 1 (Adapted from (Genest & Wagner, 1987)) If f obeys EIPP
and PDS, then there exist constants α1, α2, . . . , αN , and c such that

Pr0(ωj) =
N

∑

i=1

αiPri(ωj) + c. (7)

Proof. Consider three events A1, A2, and A3, with agents’ beliefs described
as follows:

Pri(A1A2A3) = Pri(A1A2Ā3) =
(1 − zi)

2

4(1 + zi)
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Pri(A1Ā2A3) = Pri(A1Ā2Ā3) =
1 − zi

4
Pri(Ā1Ā2A3) = xi

Pri(Ā1Ā2Ā3) = yi, (8)

where zi = xi + yi for all i. In this case, all agents agree that A1 and A2

are independent and, as long as zi < 1, these equations describe a legal
probability distribution. Since f obeys PDS, there must be some function g
such that,

Pr0(Ā1Ā2A3) =
g(x1, x2, . . . , xN)

∑8
k=1 g(Pr1(ωk), . . . , PrN (ωk))

and similarly for Pr0(Ā1Ā2Ā3). Now imagine a second situation exactly as
in (8), except with Pri(Ā1Ā2A3) = x′

i and Pri(Ā1Ā2Ā3) = y′
i. Genest and

Wagner show that, as long as xi + yi = x′
i + y′

i < 1, then

g(x1, x2, . . . , xN) + g(y1, y2, . . . , yN)

= g(x′
1, x

′
2, . . . , x

′
N) + g(y′

1, y
′
2, . . . , y

′
N). (9)

From here, they show that since xi and yi can be chosen arbitrarily (as long
as their sum is less than one), then f must have the form specified. 2

Genest and Wagner go on to show, without further assumption, that f
must be a dictatorship. However, that proof does not carry through under the
weaker condition EIPP. This can be seen via a simple counterexample. Let f
always ignore the agents’ opinions, and simply assign a uniform distribution
over all ω ∈ Ω. In this case, the consensus distribution holds that all primary
events Aj are independent, and thus any agreed upon independencies are
trivially maintained. One might wonder whether EIPP admits any other,
more appealing, aggregation functions. The following proposition essentially
establishes that it does not.

Proposition 2 No aggregation function f can simultaneously satisfy EIPP,
PDS, UNAM, and ND.

Proof. With the addition of UNAM, it is clear that c must be zero in (7),
and thus f must have the form of a standard LinOP (4). From Example 1,
we know that the LinOP does not maintain independence even between just
two events. The fact that the LinOP cannot satisfy both IPP and ND is
proved formally by several authors (Genest, 1984c; Lehrer & Wagner, 1983;
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Wagner, 1984). Their proofs are applicable to EIPP as well, since they hold
even when |Ω| = 4, in which case EIPP and IPP coincide. 2

A careful examination of the proof of Lemma 1 also suggests one more
possibility when the full generality of IPP is relaxed. Suppose that all agents
agree that all three events, A1, A2, and A3, are completely independent.
Then it can be shown that Pri(Ā1A2A3) = zi/(1 + zi) + yi and, furthermore,
that xi = yi for all i. In this case, (9) holds only vacuously, since x′

i = xi and
y′

i = yi. Moreover, since xi and yi are no longer arbitrary, the proof does not
go through. Thus, under this fully independent condition, the conclusion of
Lemma 1 is no longer valid.

This insight leads us to characterize the inherent impossibility more sharply,
by dividing EIPP into two, weaker conditions, NMEIPP and MEIPP, and
showing that the former retains the impossibility while the latter does not.

Corollary 3 No aggregation function f can simultaneously satisfy NMEIPP,
PDS, UNAM, and ND.

Proof. The proof of Lemma 1 still follows under NMEIPP, and thus so does
the proof of Proposition 2. 2

Section 3.3 demonstrates that in fact, MEIPP is perfectly consistent with
PDS, UNAM, and ND in a nontrivial way. Indeed, the stronger MIPP is
consistent as well.

3.2.2 Family Aggregation

Example 3 (Family aggregation)

Consider two agents, each with a BN consisting of two primary events,
with A1 the parent of A2 and with beliefs as follows:

Pr1(A1) = 0.2 Pr2(A1) = 0.8

Pr1(A2|A1) = 0.4 Pr2(A2|A1) = 0.8

Pr1(A2|Ā1) = 0.6 Pr2(A2|Ā1) = 0.3

We compute each consensus CPT as an average of the corresponding individ-
ual CPTs. That is, Pr0(A1) = (.2+ .8)/2 = .5, Pr0(A2|A1) = (.4+ .8)/2 = .6,
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etc. This results in the following consensus joint distribution:

Pr0(A1A2) = 0.3

Pr0(A1Ā2) = 0.2

Pr0(Ā1A2) = 0.225

Pr0(Ā1Ā2) = 0.275.

Next suppose that both agents reverse their edge between the two events,
such that A2 is the parent of A1, but that their joint distributions remain
unchanged. Now the agents’ CPTs are:

Pr1(A2) = 0.56 Pr2(A2) = 0.7

Pr1(A1|A2) = 0.142857 Pr2(A1|A2) = 0.914286

Pr1(A1|Ā2) = 0.272727 Pr2(A1|Ā2) = 0.533333

and if we average locally within each CPT, we get a different consensus
distribution:

Pr0(A1A2) = 0.333

Pr0(A1Ā2) = 0.149121

Pr0(Ā1A2) = 0.297

Pr0(Ā1Ā2) = 0.220878.

Thus averaging only within each family of the BN violates the form of the
opinion pool itself (1), which insists that the consensus joint distribution
depend only on the underlying joint distributions of the agents involved. 2

We now show that this inconsistency is not confined solely to the averag-
ing aggregator.

Proposition 4 No aggregation function f can simultaneously satisfy FA,
UNAM, and ND.

Proof. Let the first event in the consensus BN be Aj1 the second Aj2, . . .,
and the last AjM

. The FA property requires both of the following:

Pr0(Aj1)

= f(Pr1(Aj1), Pr2(Aj1), . . . , PrN(Aj1)) (10)

Pr0(AjM
|Z − AjM

)

= f(Pr1(AjM
|Z − AjM

), . . . , PrN(AjM
|Z − AjM

)). (11)
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By the definition of an opinion pool (1), the consensus belief depends only on
the agents’ underlying joint distributions, and not on the particular ordering
of events in each BN. Thus, we must arrive at the same consensus distribution
as long as {j1, j2, . . . , jM} is some permutation of {1, 2, . . . , M}. Consider two
permutations, one where j1 = 1 and one where jM = 1. Then (10) and (11)
become:

Pr0(A1)

= f(Pr1(A1), Pr2(A1), . . . , PrN(A1)) (12)

Pr0(A1|Z − A1)

= f(Pr1(A1|Z − A1), . . . , PrN(A1|Z − A1)). (13)

Dalkey (1975) proves that no function can simultaneously satisfy (12), (13),
UNAM, and ND. Alternatively, the two equations essentially require that f
satisfy both MP and EB, defined in Section 2.3, which Genest (1984b) shows
are incompatible with UNAM and ND. 2

3.3 The LogOP and Consensus Markov Networks

The results in Section 3.2 suggest that insisting upon general event inde-
pendence preservation has rather severe consequences. In this section, we
see that preserving Markov independencies is in fact compatible with PDS,
UNAM, and ND. Let Aj be a primary event, and W ⊆ Z − Aj and
X = Z − W − Aj be sets of events. Then Aj is Markov independent of
X given W if Pr(Aj|WX) = Pr(Aj|W ).

Proposition 5 The LogOP satisfies MIPP.

Proof. Since the LogOP is defined in terms of atomic states ω, we make use
of the following two identities:

Pr0(A|WX) ≡ Pr0(AWX)
Pr0(AWX)+Pr0(ĀWX)

Pr0(A|W ) ≡
∑

X
Pr0(AWX)

∑

X
Pr0(AWX)+

∑

X
Pr0(ĀWX)
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where
∑

X represents a sum over all possible combinations of outcomes of
events in the set X. Then we have that,

Pr0(A|WX) =
∏N

i=1
[Pri(AWX)]αi

∏N

i=1
[Pri(AWX)]αi+

∏N

i=1
[Pri(ĀWX)]αi

=

∏

[

Pri(AW ) Pri(WX)

Pri(W )

]αi

∏

[

Pri(AW ) Pri(WX)

Pri(W )

]αi
+
∏

[

Pri(ĀW ) Pri(WX)

Pri(W )

]αi

=
∏

[Pri(AW )]αi
∏

[Pri(AW )]αi+
∏

[Pri(ĀW )]αi

=
∏

[Pri(AW )]αi
∏

[Pri(AW )]αi+
∏

[Pri(ĀW )]αi
·

∑

X

∏

[Pri(WX)]αi
∑

X

∏

[Pri(WX)]αi

=
∑

X

∏

[Pri(AW ) Pri(WX)]αi
∑

X

∏

[Pri(AW ) Pri(WX)]αi+
∑

X

∏

[Pri(ĀW ) Pri(WX)]αi

=

∑

X

∏

[

Pri(AW ) Pri(WX)

Pri(W )

]αi

∑

X

∏

[

Pri(AW ) Pri(WX)

Pri(W )

]αi
+
∑

X

∏

[

Pri(ĀW ) Pri(WX)

Pri(W )

]αi

=
∑

X

∏

[Pri(AWX)]αi
∑

X

∏

[Pri(AWX)]αi+
∑

X

∏

[Pri(ĀWX)]αi

=
∑

X
Pr0(AWX)

∑

X
Pr0(AWX)+

∑

X
Pr0(ĀWX)

= Pr0(A|W )
2

Suppose that each agent’s belief is given as a MN, and we wish to generate
a consensus MN structure that can encode the results of the LogOP. As
discussed in Section 2.5, graph connectivity in a MN represents probabilistic
dependence, and the neighborhood relation represents direct influence. For
each node Aj, the set of its neighbors plays the role of W in Proposition 5,
and all other nodes constitute the set X. The proposition ensures that, if
all agents agree on a common MN structure, then the consensus distribution
derived by the LogOP will respect the same structure. When agents are not in
complete agreement on the structure, then the consensus can be represented
as a MN defined by the union of all the individual MNs. In other words,
there is an edge between Aj and Ak in the consensus MN if and only if there
is an edge between those two nodes in at least one of the agents’ MNs.

Pearl (1988) gives axiomatic descriptions of both MNs and BNs. Only the
former includes an axiom called strong union, which states that if Pr(Aj|Ak) =
Pr(Aj), then Pr(Aj|WAk) = Pr(Aj|W ) for all W ⊆ Z. Notice that, if the
precondition of the EIPP is met, and strong union holds for all agents, then
the precondition of the MEIPP must also hold. This axiom is the key dis-
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tinction that allows common MN structures to be maintained in the LogOP
consensus, whereas common BN structures in general are not.

Given a collection of BNs, generating a consensus BN structure that is
consistent with the LogOP is also relatively straightforward. We first convert
each BN into a MN by moralizing the graphs, or fully connecting each node’s
parents and dropping edge directionality (Lauritzen & Spiegelhalter, 1988;
Neapolitan, 1990). Next, we compute the union of the individual MNs, and
finally we convert the resulting consensus MN back into a BN by filling in or
triangulating the network, reintroducing directionality according to the fill-
in order3 (Jensen, 1996; Lauritzen & Spiegelhalter, 1988; Neapolitan, 1990;
Pearl, 1988).

We have outlined how to derive consensus MN or BN structures; what of
computing the associated probabilities? In Section 3.4, we give an algorithm
for computing the probabilities in a consensus BN that is polynomial in the
size of its CPTs. Note that, even when all agents agree on a BN structure,
the size of the final representation may grow exponentially during fill-in, and
computing the union of the intermediate MNs when agents disagree will only
exacerbate this problem. Nevertheless, even a decomposable representation
can be exponentially smaller than the full joint distribution, and the most
popular algorithms for exact Bayesian inference do operate on decomposable
models in practice.

3.4 Computing LogOP and LinOP

Since the LinOP (4) and LogOP (5) are defined over atomic states, com-
puting, for example, the consensus marginal probability of a single event
involves in the worst case a summation over 2M−1 terms. Moreover, even
computing the LogOP consensus for a single state requires a normalization
factor that is itself a sum over all 2M states. In this section, we see that if
each agent’s belief is represented as a BN, the LinOP and LogOP consensus
for any probabilistic query can be computed more efficiently. In particular,
for the LogOP, we can compute the CPTs of a consensus BN with time com-
plexity O

(

NM2 · 2max{q(j)}
)

, where q(j) is the number of parents of Aj in
the consensus structure.

3We do not claim that these consensus structures are minimal, or even that LogOP is
the preferred aggregation method. My goal is more to guide a modeler’s decision process
by delineating what representations are consistent under what circumstances.
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Aj

Ak Al

pa Aj(   )

Aj

Ak Al

pa Aj(   )

Figure 2: Two potential sections of a decomposable BN. Aj’s children can
be either in the same clique or in separate cliques.

We focus first on the task of generating a LogOP-consistent consensus BN.
We compute its structure as described in Section 3.3. Consider computing
the CPT at Aj, that is, Pr0(Aj|pa(Aj)) for all combinations of outcomes of
events in pa(Aj). From Proposition 4, we know that simply combining each
agent’s assessment of this conditional probability will not succeed in general.
However, we can compute the last CPT, Pr0(AM |pa(AM)), in terms of only
the Pri(AM |pa(AM)), by computing the LogOP over the single event AM :

Pr0(AM |pa(AM)) =

∏N
i=1 [Pri(AM |pa(AM ))]αi

∏

[Pri(AM |pa(AM))]αi +
∏

[Pri(ĀM |pa(AM))]
αi

. (14)

Because the LogOP satisfies EB, if we condition on all other events Z−AM in
the network, then the LogOP over just AM will return the same result as if we
had computed the LogOP over all events, and then conditioned on Z −AM .
Equation 14 also reflects the fact that Pr0(AM |pa(AM)) = Pr0(AM |Z −AM )
and Pri(AM |pa(AM)) = Pri(AM |Z − AM ), by the semantics of the BNs.

We can compute the remainder of the CPTs in reverse index order. As-
sume that the CPTs Pr0(Ak|pa(Ak)) have been calculated for all k > j, and
that next we need to calculate Pr0(Aj|pa(Aj)). To simplify the discussion,
let Aj have exactly two children, Ak and Al, with j < k < l; the analysis
generalizes easily to more children (or one child). Since the BN is decom-
posable, its topology is a tree of cliques (Chyu, 1991; Pearl, 1988; Shachter
et al., 1991), and Ak and Al can either be in the same clique or in separate
cliques, as depicted in Figure 2. Note that decomposability also ensures that
Aj’s neighbors, Al ∪ Ak ∪ pa(Aj), constitute its Markov blanket. We can
query each of the agent’s BNs for the probabilities Pri(Aj|Al ∪Ak ∪pa(Aj))
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using a standard BN inference algorithm. From these, we can compute the
corresponding consensus probability as a LogOP only over Aj, as before:

Pr0(Aj|Al ∪ Ak ∪ pa(Aj))

∝
N
∏

i=1

[Pri(Aj|Al ∪ Ak ∪ pa(Aj))]
αi . (15)

We now need only eliminate the conditioning on Al and Ak. By Bayes’s rule,
we have that

Pr0(Aj|Al ∪ Ak ∪ pa(Aj))

Pr0(Āj|Al ∪ Ak ∪ pa(Aj))

=
Pr0(Al ∪ Ak|Aj ∪ pa(Aj))

Pr0(Al ∪ Ak|Āj ∪ pa(Aj))
·
Pr0(Aj|pa(Aj))

Pr0(Āj|pa(Aj))

=
Pr0(Al|Ak ∪ Aj ∪ pa(Aj))

Pr0(Al|Ak ∪ Āj ∪ pa(Aj))
·
Pr0(Ak|Aj ∪ pa(Aj))

Pr0(Ak|Āj ∪ pa(Aj))

·
Pr0(Aj|pa(Aj))

Pr0(Āj|pa(Aj))
.

Because the BN is decomposable, and regardless of whether Ak and Al are
in the same or different cliques, Pr0(Al|Ak ∪ Aj ∪ pa(Aj)) = Pr0(Al|pa(Al))
and Pr0(Ak|Aj∪pa(Aj)) = Pr0(Ak|pa(Ak)), both of which have already been
computed. Therefore we can calculate the CPT at Aj as follows:

Pr0(Aj|pa(Aj))

Pr0(Āj|pa(Aj))

=
Pr0(Aj|Al ∪ Ak ∪ pa(Aj))

Pr0(Āj|Al ∪ Ak ∪ pa(Aj))
·
Pr0(Al|p̃a(Al))

Pr0(Al|pa(Al))

·
Pr0(Ak|p̃a(Ak))

Pr0(Ak|pa(Ak))
, (16)

where p̃a(Ak) and p̃a(Al) contain Āj, and pa(Ak) and pa(Al) contain Aj.
Once we compute the likelihood ratio on the LHS of (16), the desired proba-
bilities are uniquely determined, since Pr0(Aj|pa(Aj))+Pr0(Āj|pa(Aj)) = 1.
The psuedocode for the full algorithm is given in Figure 3.

A consensus BN consistent with the LinOP would in general be fully
connected, and thus not an object of particular value. However, if all agents’
beliefs are given as BNs, we can retain their separation and still compute
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logop-consensus-bn(Pr1, Pr2, . . . , PrN)
input: N Bayesian networks: Pr1, Pr2, . . . , PrN

output: LogOP-consistent consensus BN: Pr0

1. Structure of Pr0 = triangulate [∪N
i=1 moralize [Pri]]

2. Pr0(AM |pa(AM)) ∝
∏N

i=1 [Pri(AM |pa(AM))]αi

3. for j = M − 1 downto 1

4. Pr0(Aj|Al ∪ Ak ∪ pa(Aj)) ∝
∏N

i=1 [Pri(Aj|Al ∪ Ak ∪ pa(Aj))]
αi

5.
Pr0(Aj |pa(Aj))

Pr0(Āj |pa(Aj))
=

Pr0(Aj |Al∪Ak∪pa(Aj))

Pr0(Āj |Al∪Ak∪pa(Aj))
· Pr0(Al|p̃a(Al))

Pr0(Al|pa(Al))
· Pr0(Ak|p̃a(Ak))

Pr0(Ak|pa(Ak))

Figure 3: Algorithm for computing the CPTs of a LogOP-consistent consen-
sus BN.

LinOP queries more efficiently. We exploit the fact that the LinOP obeys
MP, and thus that the LinOP of any compound, marginal event can be
computed as a LinOP over only that event. For example,

Pr0(A2Ā5A9) =
N

∑

i=1

αiPri(A2Ā5A9),

where the terms on the RHS are calculated using a standard algorithm for
Bayesian inference. Any conditional probability can be computed as the
division of two compound, marginal probabilities.

Finally, we characterize the computational complexity of LinOP when all
input models are BNs. Clearly, computing an arbitrary query Pr0(E|F ) is
NP-hard. Proposition 6 establishes that, even when all topologies agree, and
even when only computing the LinOP of a CPT entry, the problem remains
intractable.

Proposition 6 Let all input BNs have identical topologies. Then computing
Pr0(Aj|pa(Aj)) consistent with LinOP is NP-hard.

Proof. Suppose that N = 2. Let Pr1 be an arbitrary BN and let Pr2 have
an identical topology, but encode a uniform distribution—that is, Pr2(ω) =
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1/2M . We have shown that, if Pr0(AM |pa(AM)) were computable in polyno-
mial time, then Pr1(AM) could be inferred in polynomial time. Computing
the later query is NP-hard (Cooper, 1990), and so the former must be as
well. 2

3.5 Related Work

Faria and Smith (1996) examine a group decision making situation where
agents agree on a common decomposable BN structure and have identical
preferences. They define a weaker form of EB, called conditional external
Bayesianity (CEB), which requires EB to hold only for CPT entries, and
only when evidence updates are based on cutting likelihood functions—those
which can be factored according to the model structure. They show that a
generalized LogOP, called a conditional LogOP, is the only pooling function
that satisfies both CEB and UNAM. The conditional modified LogOP pre-
serves the agreed-upon structure and allows expert weights to vary across
families in the structure. The authors also present an associated procedure
for iteratively revising weights that reflects the relative alignment of the ex-
perts’ predictions with actual observed outcomes.

Ng and Abramson (1994) describe an architecture called the probabilis-
tic multi-knowledge-base system, which consists of a collection of BNs, each
encoding the knowledge of a single expert. The BNs are kept separate and
probabilities are combined at run time with a variable-weight variant of the
LinOP. The authors address a variety of engineering issues, including the
elicitation and propagation of expert confidence information, and build a
working prototype to diagnose pathologies of the lymph system. Xiang (1996)
describes conditions under which multiply sectioned Bayesian networks, origi-
nally developed for single agent reasoning, can represent the combined beliefs
of multiple agents. The main assumption is that, whenever two agents’ BNs
contain some of the same events, they must agree on the joint distribution
over these common events. Bonduelle (1987) prescribes both normative and
behavioral techniques for a decision maker (DM) to identify and reconcile
differences of opinion among experts. When those opinions are expressed as
graphical models, he suggests that the DM first choose a consensus topol-
ogy, and then calculate aggregate probabilities. Jacobs (1995) compares the
LinOP and supra Bayesian approaches as methods for combining the multiple
feature analyzers found in real and artificial neural systems.
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Matzkevich and Abramson (1992) give an algorithm for explicitly com-
bining two BN DAGs into a single DAG, or fusing the two topologies. The
algorithm transfers one arc at a time from the second DAG to the first, pos-
sibly reversing the arc in order to remain consistent with the current partial
ordering. Reversing arcs may add new arcs to the second DAG (Shachter,
1988), which would in turn need to be transferred. In a second paper, the
same authors show (1993) that the task of minimizing the number of arcs
in their combined DAG is NP-hard, as are several other related tasks. They
argue that, intuitively, the consensus model should capture independencies
agreed upon by at least c ≤ n of the agents; in particular, when c = n and
the orderings are mutually consistent, the consensus DAG should be a union
of the individual DAGs. In both of these papers, and in Bonduelle’s work,
it is essentially assumed that the EIPP, or a stronger version thereof, should
hold.

Though Matzkevich and Abramson make no commitment on how to com-
bine probabilities, they do give an example (1992) where the LinOP is ap-
plied locally, or separately within each CPT, thus satisfying the FA property.
Although such a constraint on aggregation may seem natural, we saw in
Section 3.2 that it actually has very severe implications.

4 Graphical Models for Risk Sharing

We turn now to a second common group coordination problem: risk alloca-
tion. Securities markets allow agents to transfer risk among themselves, and
complete securities markets, defined in Section 2, support a Pareto-optimal
allocation of risk. Unfortunately, a complete market required a number of
securities exponential in the number of primary events, and so is for all prac-
tical purposes impossible to achieve in general.

In this section, we explore the extent to which graphical models can help
reduce the number of securities required. Though we find some strict con-
ditions under which graphical structures can yield exponential savings, our
findings are mainly negative: even unanimously agreed upon independencies
may disappear once the group begins interacting.

We begin by noting the strong correspondence between equilibrium prices
in a securities market and aggregate beliefs. The connection allows us to
track the consequences of the negative and positive results of Section 3 as
they apply to risk sharing via securities markets.
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4.1 Equilibrium as Consensus

The standard formulation of competitive equilibrium (6) is as a fixed point
where each agent’s demand is optimal at current prices, and each security’s
price balances aggregate demand. In this section, we examine an alternative
characterization of equilibrium, recognized first by Drèze (1987). Agent i’s

first-order condition for x
〈j〉
i is:

∂Ui(x)

∂x
〈j〉
i

=
∑

ω∈Ω

Pri(ω)
∂ui

(

Υ
〈ω〉
i

)

∂x
〈j〉
i

= 0,

where Υ
〈ω〉
i =

∑

k

(

1ω∈Ak
− p〈k〉

)

x
〈k〉
i is its payoff in state ω, and 1ω∈Ak

is the
indicator function that equals one if ω ∈ Ak, and zero otherwise. Applying
the chain rule

∑
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and solving for p〈j〉, we find that:

p〈j〉 =

∑

ω∈Aj
Pri(ω)u′

i

(

Υ
〈ω〉
i

)

∑

ω∈Ω Pri(ω)u′
i

(

Υ
〈ω〉
i

) = PrRN
i (Aj). (17)

In words, equilibrium can also be considered a fixed point where exchanges
among agents induce a consensus on risk-neutral probabilities across avail-
able securities, and where the security prices themselves match these agreed-
upon values.

4.2 Complete Markets, Complete Consensus, and Pareto

Optimality

As described in Section 2.4, a securities market is complete when S = |Ω|−1
and all securities are linearly independent. In such a market, equilibrium
allocations of risk are Pareto optimal: any gamble, contingent on any event
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E ⊆ Ω, that is an acceptable purchase for one agent is not an acceptable sale
for any other (Arrow, 1964).

A probability distribution over Ω has dimensionality |Ω| − 1 (normalized
likelihoods for the |Ω| states). Prices of securities in a complete market con-
stitute |Ω| − 1 linearly independent equations for these |Ω| − 1 unknowns,
and thus define unique probabilities for all states ω ∈ Ω, also called the state
prices (Huang & Litzenberger, 1988; Varian, 1987). Denote these probabili-
ties as Pr0(ω), and let Pr0(E) =

∑

ω∈E Pr0(ω) be the price-probability of any
event E, perhaps not directly corresponding to an available security.

The agents’ risk-neutral distributions also have dimensionality |Ω| − 1,
subject to the S constraints defined by (17). If the market is complete, it
follows that PrRN

i is uniquely determined, and equals Pr0 for all i. That is,
a complete market induces a compete consensus on risk-neutral probabili-
ties. This suggests an intuitive explanation of why equilibrium allocations
are Pareto optimal. All agents behave as if they are risk-neutral (payoff-
maximizing) with identical beliefs. In such a situation, there are simply no
differences of risk-preference or opinion on which to trade.

If S < |Ω| − 1, then the consensus on risk-neutral probabilities is gener-
ally incomplete. Whenever PrRN

h (ω) 6= PrRN
i (ω) for any ω, there exists an

acceptable exchange between agents h and i, though perhaps not supported
by the S available securities. An equilibrium allocation in an incomplete
market is not necessarily Pareto optimal.4 But it can be, depending on the
particular belief structures of the agents. Call a market operationally com-
plete if its competitive equilibrium (x,p) is Pareto optimal (with respect to
the agents involved), even if the market contains less than |Ω| − 1 securities.
As a degenerate example, an empty market is operationally complete for an
economy of completely identical agents. Although such a market does not
support all conceivable trades, it does support all acceptable trades among
the given agents.

4.3 Structured Markets: An Analogy to Bayesian Net-

works

A complete securities market contains |Ω| − 1 securities, essentially one for
each ω ∈ Ω. In attempting to represent probability distributions over Ω,

4Allocations are always efficient with respect to available securities, but not necessarily
with respect to all states.
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researchers in uncertain reasoning are faced with an analogous combinatorial
explosion. The typical solution is to work with the factored event space,
rather than the state space, and to exploit any independencies among events
using graphical models.

Continuing the analogy, securities markets can be structured according
to the directed acyclic graph D of any BN. Simply introduce one conditional
security 〈Aj|pa(Aj)〉 for every conditional probability Pr(Aj|pa(Aj)) in the
network. For each event Aj with q(j) = |pa(Aj)| parents, this adds 2q(j)

securities, one for each possible combination of outcomes of events in pa(Aj).
Call such a market D-structured. Imagine for the moment that D is fully
connected (that is, no independencies are represented). Then a D-structured
market contains

∑M
j=1 2j−1 = 2M −1 = |Ω|−1 linearly independent securities,

and is thus complete.
The benefit of a BN representation, and likewise a structured market,

obtains when D is less than fully connected, and thus the market contains less
than |Ω| − 1 securities. What can be said in this case? Certainly, depending
on the beliefs and utilities of the agents, inefficient allocations are possible.
Nonetheless, under circumstances explored below, the smaller market may
suffice for operational completeness.

4.4 Compact Markets I

4.4.1 Consensus On Risk-Neutral Independencies

Call a D-structured market a risk-neutral independency market, or an RNI-market,
if, in equilibrium, D is an I-map of PrRN

i for all agents i. That is, all
agents’ risk-neutral distributions agree with the independencies encoded in
the market’s structure. Paralleling our notation for true conditional indepen-
dence, let CIRN

i [Aj, W, X] denote the risk-neutral conditional independence
PrRN

i (Aj|WX) = PrRN
i (Aj|W ).

Proposition 7 At equilibrium in an RNI-market, PrRN
h (ω) = PrRN

i (ω) for
all agents h, i and all states ω ∈ Ω.

Proof. The market contains
∑M

j=1 2q(j) securities, imposing an equal num-
ber of constraints on every agent’s risk-neutral distribution via (17). For
each event, I-mapness further imposes 2q(j)(2j−1−q(j) − 1) conditional inde-
pendence constraints of the form CIRN

i [Aj,pa(Aj),pred(Aj) − pa(Aj)], for
all combinations of outcomes of events in pa(Aj) and all but one combination
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of outcomes of events in pred(Aj) − pa(Aj) (the remaining one is implied
by the others). Then every agent’s risk-neutral distribution is subject to

M
∑

j=1

2q(j) + 2q(j)(2j−1−q(j) − 1)

=
M
∑

j=1

2j−1 = 2M − 1 = |Ω| − 1

identical, linearly independent constraints. Therefore PrRN
h = PrRN

i for all
h, i. 2

In an RNI-market, define the state prices Pr0(ω) = PrRN
i (ω) as the unique

probabilities over Ω that are consistent with the prices of available securities
and the independencies of D. The following corollary establishes that equi-
librium prices for any of the |Ω|−1−S “missing” securities are also derivable
from Pr0.

Corollary 8 Let 〈p〈1〉, . . . , p〈S〉〉 be the equilibrium prices in an RNI-market.
Introduce a new security 〈E〉. Then 〈p〈1〉, . . . , p〈S〉, Pr0(E)〉 are equilibrium
prices in the expanded market.

Proof. Before the extra security is introduced, all agents’ risk-neutral proba-
bilities PrRN

i (E) already equal Pr0(E), without buying or selling any quantity
of the security. It follows that, with the additional security, the equilibrium
condition (17) is satisfied with x

〈E〉
i = 0 for all i, p〈E〉 = Pr0(E), and all other

prices unchanged. 2

The number of securities in an RNI-market, O
(

M · 2max{q(j)}
)

, can be

exponentially smaller than the 2M − 1 required for traditional completeness.
The following corollary shows that the more compact market supports allo-
cations that are equally efficient.

Corollary 9 Every RNI-market is operationally complete. That is, the equi-
librium allocations x and state prices Pr0 in an RNI-market constitute an
equilibrium in a (truly) complete market composed of the same agents.

Proof. By repeated application of Corollary 8, we can add the |Ω| − 1 − S
securities necessary to complete the market.5 For each new security, a price

5A natural set to add are the
∑M

j=1 2q(j)(2j−1−q(j) − 1) securities of the form
〈Aj |pred(Aj)〉, for all events Aj , all combinations of outcomes of pa(Aj), and all but
one combination of outcomes of pred(Aj) − pa(Aj).
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consistent with Pr0, coupled with zero demand from all agents, satisfies (17).
All complete markets, regardless of structure, support the same equilibrium
allocations and state prices (Huang & Litzenberger, 1988; Mas-Colell et al.,
1995; Varian, 1987). 2

Proposition 7 and its corollaries are equilibrium results only. We sketch
here one possible procedure for reaching agreement on the market structure.6

Begin with securities in only the M events: 〈A1〉, . . . , 〈AM〉. If any agent’s
demand for 〈Ak|Aj〉 (for any j < k) at price p〈Ak〉 is nonzero, then it cre-
ates a new market in 〈Ak|Aj〉. If, at some future time, the agent has zero
demand for its new security, then it may retract the security. An additional
condition for equilibrium is that no agent desires to create or withdraw any
markets. Then, in equilibrium, it should be the case that all agents’ risk-
neutral independencies agree with the market structure, and that the market
is operationally complete. We might want to add a transaction cost for open-
ing new markets, so that equilibrium only ensures that risks are hedged up
to a threshold cost.

4.4.2 Computational Complexity Of Arbitrage

Imagine that, after equilibrium is reached in an RNI-market, a redundant
security is introduced, say 〈AM〉. The equilibrium price of 〈AM〉 is already
determined (Corollary 8): it must equal Pr0(AM) = PrRN

i (AM). Further-
more, if the current price does not equal Pr0(AM), then the market is not in
equilibrium, and arbitrage is possible. For example, if p〈AM 〉 < Pr0(AM), then
an outside observer O could purchase it at the going price and sell it to any
of the agents at price p∗ such that p〈AM 〉 < p∗ < PrRN

i (AM) = Pr0(AM ). Al-
though O does not have direct access to Pr0(AM), it is uniquely computable
given the other prices and the independence structure of D.

If O can find an arbitrage opportunity by correctly pricing the redun-
dant security, then O can perform Bayesian inference, which is #P-complete
(Cooper, 1990).

6This procedure is similar to Geiger’s (1990) protocol for eliciting independence struc-
tures from experts.
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4.5 Compact Markets II: Consensus on True Indepen-
dencies

Equilibrium agreement on risk-neutral independencies may seem a some-
what strange condition, especially considering that the PrRN

i are changing as
transactions occur. Some authors argue that, since agents appear to act ac-
cording to PrRN

i and standard elicitation techniques reveal PrRN
i , risk-neutral

probabilities are in fact no less “real” than true probabilities (Kadane &
Winkler, 1988; Nau & McCardle, 1991). However, while it seems reason-
able that agents would have true independencies in common (Pearl, 1993;
Smith, 1990), it is harder to justify why their risk-neutral independencies
would coincide. This section develops a theory of compact markets based
on consensus on true independencies. If, despite any quantitative differences
between Pri and PrRN

i , an agent’s true independencies were always manifest
as risk-neutral independencies, then results concerning RNI-markets would
carry over unchanged. Section 4.5.1 demonstrates that this is indeed the
case for a subclass of agents and a subset of independencies. Section 4.5.2
discusses how known limitations of belief aggregation procedures restrict the
possibility of obtaining compact markets under more general circumstances.

4.5.1 Consensus on Markov Independencies

A commonly assumed risk-averse utility form is exponential utility : ui(µ) =
−e−ciµ. This utility form is synonymous with constant absolute risk aversion
(CARA), where ci is agent i’s coefficient of risk aversion, or 1/ci its risk
tolerance. As the agent’s wealth increases, its marginal utility for unit dollars
decreases (since it is risk-averse), but the amount of its aversion to risk
remains constant at ci.

In this section, we show that, in economies composed of agents with
CARA, markets structured according to agreed upon (true) Markov inde-
pendencies are operationally complete. Define an independency market, or
an I-market, as a D-structured market such that D is an I-map of Pri for all
agents i (i.e., all agents’ true distributions agree with the independencies in
D). An I-market is decomposable if D is decomposable—every node’s parents
are fully connected.

Let Z = {A1, . . . , AM} be the set of all events, Aj ∈ Z a particular event,
and W ⊆ Z −Aj and X = Z −W −Aj subsets of events. We are interested
in whether agent i’s Markov independencies CIi[Aj, W, X] are reflected as

34



Draft manuscript; Please do not distribute

a risk-neutral independencies CIRN
i [Aj, W, X], and are thus observable. For

brevity, we drop the subscript i when only one agent is under consideration.

Proposition 10

CI[Aj, W, X]&





u′

(

Υ〈ĀjWX〉
)

u′(Υ〈AjWX〉)
=

u′

(

Υ〈ĀjWX̃〉
)

u′

(

Υ〈AjWX̃〉
)





⇒ CIRN[Aj, W, X], (18)

where the second precondition must hold for all possible joint outcomes of the
events in W , and all pairs (X, X̃) of different joint outcomes of events in X.

Proof.
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(
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Υ〈ĀjWX̃〉
)

PrRN(AjWX)

PrRN(AjWX)+PrRN(ĀjWX)
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PrRN(Aj|WX) = PrRN(Aj|WX̃)

2

The second precondition in (18) says that the ratio of marginal utility
in states where Aj does not occur to marginal utility in states where Aj

does occur cannot depend of the outcomes of events in X. This is true (and
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indeed PrRN = Pr) if the agent’s marginal utility u′ is constant across states.
This holds if the agent is risk neutral, and holds approximately if utility is
state-independent and Υ〈ωj〉 ≈ Υ〈ωk〉. But this approximation is not realistic
for an agent engaged in trading securities, since a central role of the market
is precisely to enable the transfer of wealth across states.

Let Υ〈AjW 〉 be the agent’s payoff from all securities that depend only the
outcomes of events in Aj ∪ W . Examples are 〈Aj〉, 〈AjW 〉, and 〈Aj|W 〉,
which return the same dollar amount regardless of the realizations of events
in X = Z − W − Aj. Similarly, let Υ〈WX〉 be the payoff from securities that
do not depend on Aj.

Suppose that the agent exhibits CARA, and that its payoffs are separable
according to Υ〈AjWX〉 = Υ〈AjW 〉 + Υ〈WX〉 − Υ〈W 〉. Separability essentially
means that any of the agent’s securities (or prior stakes) whose payoff depends
on Aj cannot also depend on events in X. In this case,

u′

(

Υ〈ĀjWX〉
)

u′(Υ〈AjWX〉)
=

u′

(
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Thus the constraint on utility in (18) is satisfied, and any Markov indepen-
dencies are observable.

We are now in a position to derive the main result of this section.

Proposition 11 When all agents have CARA, every decomposable I-market
is an RNI-market.

Proof. Let Wj be the set of direct parents and direct children of event Aj,
and Xj all other events. From decomposability and I-mapness, we can infer
that

1. CIi[Aj, Wj, Xj] for all agents i and events j,

2. none of the securities 〈Aj|pa(Aj)〉 that are contingent on Aj depend
on Xj, and
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3. none of the securities 〈Ak|pa(Ak)〉 such that Aj ∈ pa(Ak) that are
conditional on Aj depend on Xj.

Items 2 and 3 ensure separability of payoffs from the available securities (we
assume that any prior stakes are also separable). Then, invoking Proposi-
tion 10, CIRN

i [Aj, Wj, Xj] for all agents i and events j. As a result, D is an
I-map of every PrRN

i regardless of allocations or prices, including those at
equilibrium. 2

Proposition 7 and Corollaries 8 and 9 are immediately applicable. In par-
ticular, for agents with CARA, every decomposable I-market is operationally
complete.

4.5.2 Inherent Limitations

One might wonder whether compact I-markets are possible for larger classes
of agents or independencies. It can be shown via counterexample that, even
when all agents have CARA, a market conforming to agreed-upon (possi-
bly non-Markov) independencies will not always be operationally complete.
Moreover, when all agents have logarithmic utility for money (another com-
monly assumed utility form), even a market conforming to agreed-upon
Markov independencies will not always be operationally complete.

Although we do not have a formal statement of impossibility, results from
statistical belief aggregation suggest that agreement on true independencies
will not be sufficient in general to yield compact and operationally complete
markets. The state prices Pr0 in a securities market are a function of all
the agents’ beliefs (and their utilities), and as such essentially constitute a
measure of aggregate belief. Many researchers have studied belief aggregation
functions (Genest & Zidek, 1986), and several impossibility theorems severely
restrict the class of functions that preserve unanimously held independencies
(Genest & Wagner, 1987), even when restricted to independencies among
the primary events (Pennock & Wellman, 1999). The aggregation “func-
tion” of a securities market is of course subject to the same limitations. We
suspect that, for many configurations of agents, markets structured accord-
ing to unanimously-held true independencies will not yield provably optimal
allocations of risk. Nevertheless, it may well be the case that structured
markets can yield approximately optimal allocations over a wider range of
agent populations.

The examples in Section 3 where the LinOP (Example 1) and LogOP
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(Example 2) fail to preserve unanimous independencies have direct, negative
implications for the possibility of compact I-markets for larger classes of
agents or independencies.

Let two agents have beliefs over two events, as prescribed in Example 1
and pictured in Figure 1(a). Both agents agree that the events are indepen-
dent. Suppose additionally that they both have GLU with equal wealth pa-
rameters. In a complete market (of 22−1 = 3 linearly independent securities),
the unique state prices (and the unique consensus risk-neutral probabilities)
are the same as derived by the LinOP in the example, and do not reflect the
independence. Thus an I-market consisting of only the two securities 〈A1〉
and 〈A2〉 is not operationally complete.

In Example 2 (Figure 1(d)), two agents agree that, among three primary
events, A1 and A2 are independent, and A3 depends on both. If both agents
have CARA, then the unique state prices in a complete market equal the
LogOP consensus probabilities, and do not preserve the independence be-
tween A1 and A2. Thus an I-market mirroring the agreed-upon polytree
structure of Figure 1(d) (containing the six securities 〈A1〉, 〈A2〉, 〈A3|A1A2〉,
〈A3|A1Ā2〉, 〈A3|Ā1A2〉, and 〈A3|Ā1Ā2〉) is not operationally complete.

5 Conclusion

Positive progress in research in group coordination, though certainly not
lacking, is circumscribed by controversy and impossibilities. For example, a
proliferation of results in the 1980s, exemplified by groundbreaking contribu-
tions by Genest (1984a, 1984b, 1984c) and his coauthors (Genest et al., 1986;
Genest & Wagner, 1987), do much to demarcate the impassable boundaries
in the context of belief aggregation. Contributions in this paper as well fall
on both sides of the impossibility fence. Section 5.1 catalogues those results
that entail new limitations, Section 5.2 those that uncover new possibilities.

5.1 For the Pessimist. . .

A subset of results in this paper further confine and confound the search for
reasonable aggregation procedures, by extending the impossibility theorems
to new domains, and by raising new concerns.

A series of theorems (Lehrer & Wagner, 1983; Wagner, 1984) culminating
in that of Genest and Wagner (1987) show that very weak and reasonable
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constraints on an aggregation function are enough to rule out independence
preservation (i.e., the retention of all agreed-upon independencies within the
aggregate distribution). But these theorems apply to functions that preserve
all possible independencies between any events—even those not representable
in a graphical model. A potential loophole remained that some reasonable
function might preserve the independencies among primary events in a graph-
ical model. Indeed, in Section 3, we see that the same conditions sufficient to
rule out general independence preservation are not sufficient to rule out this
weaker form. However, we show that, with the additional (uncontroversial)
assumption of unanimity, the impossibility returns.

This result resurfaces in the study of structured securities markets in Sec-
tion 4. The intuitive inclination to structure the market according to agreed-
upon independencies proved fatally flawed. Prices in a securities market are
essentially the output of an aggregation function—the one defined by market
equilibrium—and are thus subject to all the general limitative theorems.

We derive a second impossibility theorem in Section 3 regarding the com-
bination of BNs. A natural policy—that other authors have advocated or
assumed—is to confine the aggregation locally, within each conditional prob-
ability table of the BN. We prove that any such local aggregation function
necessarily fails to satisfy either unanimity or nondictatorship, two seemingly
incontrovertible assumptions.

Other results demonstrate that desirable operations, while not impossi-
ble, are instead (worst-case) intractable. Someone interested in computing
the LinOP of several probability distributions, each represented as a BN,
would not want to construct a consensus BN, as it would in general be fully
connected. This suggests keeping the individual BNs separate, and comput-
ing the LinOP of any desired query at runtime. In Proposition 6, we prove
that performing this computation is NP-hard, even if answering the same
query is easy within each individual BN. Similarly, we prove that LogOP is
NP-hard as well.

Even the positive results in Section 3 describing BN representations of
the logarithmic opinion pool (LogOP), are shaded by potential computational
barriers. The consensus network structure must be made decomposable, a
process that can increase the size of the representation exponentially. Similar
computational concerns arise in Section 4 when the structure of the securities
market is required to be decomposable. we also show in Section 4 that
properly pricing securities and finding arbitrage opportunities within in a
compact market is NP-hard.
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5.2 For the Optimist. . .

On the other hand, some results in this paper can be characterized as pos-
sibility results. Each identifies a weakening of an impossibility theorem that
exposes a (hopefully nontrivial) solution.

One possibility result arises by weakening Genest and Wagner’s (1987) ax-
iom for preserving independence, to require only the preservation of Markov
independencies. Section 3 demonstrates that the LogOP does in fact main-
tain all agreed-upon Markov independencies. This suggests that, if the
preservation of independence structure is important—and many authors ar-
gue that it is (Laddaga, 1977; Raiffa, 1968)—then the LogOP may be the
most viable option. Markov independencies play an important role in the the-
ory of graphical models, and are precisely the type representable in Markov
networks (MNs) and decomposable BNs. We describe procedures for con-
structing MN and BN structures consistent with the LogOP consensus. We
also delineate an algorithm for computing all of the conditional probability
tables in a LogOP-consensus BN. This structured representation is poten-
tially exponentially smaller than the standard representation.

The preservation of Markov independencies has a direct corollary in Sec-
tion 4’s investigation of structured securities markets. For a certain class
of agents, true Markov independencies are always observable as risk-neutral
independencies. Thus, if all agents are of this type, all beliefs agree with
the independencies encoded in the market structure, and this structure is
decomposable, then the market is operationally complete.
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