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Abstract

I discussthe prospectsof openingsecuritiesmarkets in hardcomputationalproblems,including
satisfiability, countingproblems,andBayesianinferenceproblems.SuchNP marketswould offer
directmonetaryincentivesfor thedevelopmentof betteralgorithms.Market priceswould serve as
collectiveapproximatesolutions,andbid-askspreadsmayreflectproblemdifficulty. Somemarkets
offer controlledsettingsfor investigatingthe speedof informationincorporationin markets,and
exploring evidenceof boundedrationality and imprecisesubjective probabilitiesamongmarket
participants.

Goingonce. . .Goingtwice. . .Sold! Congratulations!
You arenowtheproudownerof . . .

. . .oneunit of oneinstanceof three-satisfiabilityproblem#V300:C1000:ID854!

1 Intr oduction

In May 1997,IBM’ sDeepBluebecamethefirst computerto defeatareigningworld chesschampion.
Along with the$700,000winner’spurse,theprogrammingteamwon the$100,000Fredkinprize,an
amountsetasidein 1980to stimulatecomputerchessresearch.A $1.5million prizestill awaits the
first computerchampionof theChineseboardgameGo.1 EveryyeartheLoebnerprize,2 and$2000,
goesto thecomputerprogramthatis judgedmosthuman-like;a $100,000prizeis earmarkedfor the
first computerto fool a judgeinto believing thatit is human,agoldstandardfor artificial intelligence
first popularizedby Turing [28]. In January1997,RSA DataSecuritysponsoreda $10,000prizefor
the first personto decodea particular56-bit DES-encryptedmessage.3 A distributedcollectionof
computers,coordinatedacrosstheInternet,accomplishedthetask,andcollectedtheprizemoney, in
Juneof thesameyear.4

By sponsoringcontests,a fundingagentcanprovide incentive for researchersto tackletheprob-
lemsthatit wantssolved.However, significantrewardsof this typearerare,andarecertainlynegligi-
blecomparedto thenumberof challengingproblemsof interest.Few individualsor groupscanafford
to backa meaningfulprizeandadvertiseit sufficiently. Othersmaysimply not desiresuchpublicity,
especiallyif theproblemitself is proprietary.

1TheIng prize,sponsoredby Acer IncorporatedandtheIng Chang-KiWei-Chi (Go)EducationalFoundation.
2http://www.loebner.net/Prizef/loebner-prize.html
3http://www.rsa.com/des/
4http://www.frii.com/ rcv/deschall.htm



Hanson[15, 14] proposesan IdeaFuturesmarket whereparticipantscanbeton futuredevelop-
mentsin science,technology, andotherarenasof public interest.He arguesthattherewardstructure
of suchamarketencourageshonestrevelationof opinionsamongscientists,yieldingpricesthatform
accurateforecastsfor useby fundingagencies,public policy leaders,themedia,andotherinterested
parties. The conceptis operationalasa Web game(run with play money) calledthe ForesightEx-
change.5 In practice,however, it is oftendifficult to preciselydefineeachsecurity’spayoff-triggering
eventin a way thatforeseesall possibleeventualities.As a result,anunbiasedhumanjudgeis gener-
ally requiredfor everysecurity. Whena securityis vaguelydefinedor thejudgeis not trusted,agents
areusuallywary of tradingin it, andits pricemayhave little or no informativevalue.

Thereis a classof problemsthatarebothinterestinganddifficult to solve,andyet any proposed
solutioncanbe easilyandpreciselyverified: namely, the classof NP-completeproblems. In Sec-
tion 3, I discussthe prospectof openingsecuritiesmarketsthatpayoff contingenton thediscovery
of solutionsto particularinstancesof an NP-completeproblems. SuchNP marketswould provide
direct monetaryincentives for developersto test and improve their algorithms,andallow funding
agentsto targetrewardsto thedesignersof thebestalgorithmsfor themostinterestingproblems.In
Sections4 and5, I discussmarketsin #P-completeproblems,wherepricesserve ascollective ap-
proximateboundson the numberof solutions,andbid-askspreadsmay indicateproblemdifficulty.
Marketsin Bayesianinferenceproblemsmay prove a naturaltestbedfor controlledexperimentsto
measurethespeedof informationincorporationin markets. Marketsin SAT countingproblemsand
Bayesianinferenceproblemsmayyield evidenceof boundedrationalityor imprecisesubjectiveprob-
abilitiesamongparticipatingagents.

2 Mark etsasinformation aggregationdevices

Whenmarketsattractbroadparticipation,pricescanencodethesumtotal of a largeamountof dis-
parateanddistributedinformation. Thepricesreflect,in a very realsense,the collective opinionof
a myriadof informedandwell-motivatedtraders[20, 21]. Informativepricesoftentranslatedirectly
into accurateforecastsof futureevents.For example,pricesof financialoptionsaregoodprobability
assessmentsof the futurepricesof theunderlyingassets[26]; pricesin political stockmarkets,like
theIowa ElectronicMarket (IEM), canfurnishbetterestimatesof likely electionoutcomesthantra-
ditional polls [10, 11]; oddsin horseraces,determinedsolelyby how muchis beton which horses,
matchvery closelywith thehorses’actualfrequenciesof winning [27, 30]; andpoint-spreadbetting
marketsyield unbiasedpredictionsof sportingeventoutcomes[12].

2.1 Securitiesmarketsand no arbitrage

Almost all economictheoriesof equilibrium assume,at a minimum, that equivalentportfolios are
pricedconsistentlywith oneanother, suchthatarbitrageopportunitiesdonot exist [2, 8, 17, 29].6

An examplearisesin the context of a securitiesmarket. In the parlanceof economictheory, a
securityis definedasa lottery ticket thatpaysoff $1 if someuncertainevent

�
occurs,andpaysoff

nothingif
�

doesnot occur.7 For example,the owner of a security“$1 if andonly if (if f) it rains
tomorrow” will be paid $1 if it rainstomorrow, andnothingotherwise. In general,we use � ���

as
shorthandfor thesecurity“$1 if f

�
”. Now imagineamarketof two disjointandexhaustivesecurities:

“$1 if f it rainstomorrow” and“$1 iff it doesnot rain tomorrow”. Owningbothsecuritiesguarantees
the holdera payoff of exactly $1 regardlessof whetherit rains. Thus the total price to buy both
securitiesshouldneverdip below $1—otherwise,thebuyercanobtaina risk-freeprofit. Similarly, in
theabsenceof arbitrage,thetotalpriceto sellbothsecuritiescanneverexceed$1. Moregenerally, the
pricesof a collectionof suchsecuritiesmustconformto a legal probabilitydistribution (modulothe

5http://www.ideosphere.com/
6Paretoefficiency, acommonandmild assumption,impliesno-arbitrage.
7Insurancecontracts,futures,options,derivatives,andevenstockscanbemodeledasportfoliosof suchatomicsecurities.



bid-askspread),otherwisearbitrageis possible.Theproof followsfrom thesameargumentdeFinetti
usedin his famousnoDutch bookjustificationfor theexistenceof individualsubjectiveprobabilities
[7].

A conditional security � ����� �	�
�
paysoff contingent on

���
andconditionalon

�	�
. That is, if�	�

occurs,thenit paysout exactly as � �����
; on the otherhand,if ���

occurs,thenthe bet is called
off andany pricepaid for thesecurityis refunded[7]. In anefficient (arbitrage-free)market, prices
of conditionalsecuritiesmustalsoadhereto the laws of probability. So, for example,given three
securities� � ��� � � �

, � � � � � � �
, and � � � �

, theremustbeprices��������������� , ��������� ��� � , and ��������� within
thethreecorrespondingbid-askrangessuchthat ���!�����������#"$���!���%� �����'&���������� .

2.2 Forecastaccuracy: Rational expectationstheory

Accordingto the theoryof rational expectations(RE), securitiespricesarenot only coherent(i.e.,
form a valid probability distribution), but arealsoaccurateforecasts,reflectingthe sumtotal of all
information available to all market participants[13, 16]. Even when someagentshave exclusive
accessto insideinformation,pricesequilibrateexactly asif everyonehadaccessto all information.
Theproceduralexplanationis thatpricesrevealto theignorantagentsany initially privateinformation;
thatis, agentslearnby observingprices.

Severalstudiesdemonstratethat,in alaboratorysetting,securitiesmarketsareoftenableto aggre-
gateinformationcorrectly, aspostulatedby RE theory[9, 23, 24, 22]. Beyondthecontrolledsetting
of thelaboratory, empiricistshaveanalyzedtheforecastaccuracy of publicmarkets.Perhapsthemost
directtestsinvolvesportsbettingmarkets.Severalstudiesdemonstratethatoddson horsescorrelate
well with theactualfrequenciesof victory at thetrack[27, 30]. Othersportsbettingmarkets,like the
NationalBasketballAssociationpoint spreadmarket,provide very accurateforecastsof likely game
outcomes[12].

TheIowaElectronicMarket (IEM)8 supportstradingin securitiestied to theoutcomeof political
andfinancialevents. Their 1988market, openonly to University of Iowa studentsandemployees,
offeredsecuritiesthat paid off proportionallyto the percentageof votesreceivedby variouscandi-
datesin thatyear’sUS Presidentialelection.Thefinal pricesmatchedBush’s final percentmargin of
victory morecloselythanany of thesix majorpolls [10]. Sinceopeningto thepublic,subsequentUS
Presidentialelectionmarketshaveattractedwideparticipationandfollowing. Otherelectionmarkets
havenow openedin Canada9 andAustria.10

3 Mark etsin satisfiability

Satisfiability(SAT)—theproblemof determiningwhethera propositionallogic sentencehasa satis-
fying instantiation—isthecanonicalNP-completeproblem,andhasfoundusein numerousapplica-
tions,rangingfrom circuit designto theoremproving. Duemostlyto its centralrole in logic, SAT has
receivedmuchattentionin theartificial intelligencecommunitythroughouttheyears.

I proposeopeninganonlinemarketof securitiesthatpayoff contingenton thediscoveryof valid
instantiationsto SAT problems.For example,supposethat oneunit of a securitypaysoff $1 if f a
solutionto aparticularSAT instanceis foundby midnightESTtonight.Theproblemis postedon the
Webin astandardformat;thesubmissionandverificationof solutionsareentirelyautomatic.As soon
asa valid solutionis received,anyoneowning the securityearns$1 per unit bought;if no solution
is receivedby the expiration time, securityholdersget nothing. Conversely, anyonethat shortsold
the securitygets$1 if a solutionis not foundandnothingif it is. Beforea solutionis receivedand
beforetheexpirationtime, tradersbuy and(short)sell thesecuritybasedon their expectationof the

8http://www.biz.uiowa.edu/iem/
9http://esm.ubc.ca

10http://ebweb.tuwien.ac.at/apsm/



eventualoutcome.Thecurrentpricecanbe thoughtof asa collective assessmentof the probability
thata solutionwill befound.

Theownersof goodSAT solverswouldbethemostdirectbeneficiariesof sucha market. Agents
from aroundthe world could devote excessCPU time to solving the problem. If someonefinds
a solution, he or shewould buy up large quantitiesof the securityand then submit the solution;
similarly, if someoneprovestheproblemunsatisfiable,heor shewouldsellenmasse. Note,however,
that tradingin a securitiesmarket is a zero-sumgame: in orderto buy a securityfor the chanceto
make 1-� dollars(or lose � dollars),someoneelsemustbe willing to sell the samesecurityfor the
chanceto make � dollars(or lose1-� dollars).Whateveroneagentloses,otheragentsgainthesame.

Findingasolutionwhentheaskpriceis lessthan$1(or proving insolubility whenthebid priceis
greaterthan$0) is like discoveringanarbitrageopportunity. If all participantstradedonly basedon
suchrisk-freearbitrageopportunities,thenno two agentswouldeveragreeto trade(assumingevery-
one’sprogramswerecorrect).Liquidity in themarketdependsontheparticipationof speculatorsand
subsidizers. Speculatorsareagentsthatdo not have a solution(or anunsatisfiabilityproof) in hand,
but tradeanyway basedon their expectationof earningmoney giventheir assessmentof theproba-
bility thatasolutionwill befound.Notethatownersof goodincompleteSAT algorithmsor heuristic
SAT algorithmsmaymake successfulspeculators.Subsidizersareagentsthatbuy andsell simply to
encouragetrading.Subsidiesareincentivesfor algorithmdevelopersto join themarket,improvetheir
algorithms,andsolve the given problems.Subsidiesmay comefrom governments,universities,or
companieswith an interestin solving theparticularproblemsat hand,or in simply fundingSAT al-
gorithmsresearchanddevelopment.For example,asemiconductormakerwith a library of hardSAT
problemswhosesolutionwouldhelpimprovetheir circuit designsmaycontributebothproblemsand
subsidiesto themarket.11 Governmentagenciescanfeel fairly confidentthat their subsidieswill go
to thebestalgorithmdevelopers,ratherthanto thebestresearchsalespeople.

Note that thesourcefor SAT instancesmustbe trusted,sinceit is possibleto generateinstances
with a known solutionthatareverydifficult to solvea priori .

4 Satisfiability counting

Now considerthefollowing SAT marketvariant: insteadof payingoff if f a solutionis found,securi-
tiespayoff if f at leastoneof ( randominstantiationof thevariablesrendersthesentencetrue. Then
theprobabilityof a$1payoff is equalto )+*-,�)+*/.10
2�3 4 , where. is thenumberof of satisfyinginstan-
tiationsand 2 is thenumberof totalpossiblevariableinstantiations.12 If theproblemis unsatisfiable,
thenabid pricegreaterthan$0still constitutesanarbitrageopportunity;similarly, if theproblemis a
tautology, thenanaskpricelessthan$1is incoherent.However, if theproblemis neitherunsatisfiable
nora tautology, andthepriceis between$0and$1,thentherearenoopportunitiesto earna risk-free
profit, only opportunitiesto earnanexpected(non-arbitrage)profit.

Sucha market could encouragethe developmentof goodSAT countingalgorithms. If the ask
price is lessthan )5*6,7)5*8.10
2�3 4 , then the securityis worth buying (assumingrisk neutrality); if
the bid price is more than )9*6,7)9*:.1012�374 , then the securityis worth (short) selling. Even if an
agentcannotcompute. exactly, as long as it cancomputeboundson . (i.e., prove that thereare
at least .<; or at most .>= solutions),it cansubmitsafebids andasks(in termsof expectedprofit).
Approximationalgorithmscanalsoyield reasonablebidsandasks.Thepurposeof usinga valueof
( greaterthanoneis to discouragesimplestochasticsimulationalgorithmsthatcancompute.10
2 to
very high precision.I envision ( to belargeenoughsothatthetime requiredto establishthetruth or
falsityof theclaim is muchgreaterthanthetimeallottedto solvingtheproblem(e.g.,48hoursto test
( randominstantiationsvs. onehourfor marketparticipantsto try to solve for . ). Figure1 shows the
relationshipbetweenexpectedpayoff and . for (?"@)<A�B and 2C"D)<A

�FE
. Thecurrentbid-askspread

11Thecompany mayremainanonymousandtheproblemdescriptionsrandomized.
12If the instanceis a near-tautology, it would make moresenseto payof iff at leastoneof G randominstantiationsrenders

thesentencefalse.
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Figure1: Expectedpayoff )H*I,7)	*$.10
2�374 versus. when (J"K)<ALB and 2M"N)>A
��E

in a SAT counting
market.

canbe consideredthe collective assessmentof boundson )O*P,7)5*I.
012�374 , providing a distributed
approximatesolutionto thegivencountingproblem.Subsidiescanagainaddliquidity to themarket.

Note that agentsdo not needto considerthe likelihoodof someoneelsesolving the problem,
asthey do in theSAT marketsof Section3. Agentsneedonly concentrateon analyzingtheproblem
itself. Ontheotherhand,SAT countingis #P-complete,sothereis no(known) wayto verify solutions
in polynomialtime. Thusthemarketsyield only approximateandunverifiablesolutions,unlike those
in Section3.

Thesourceof problemsandrandomizationmustbetrusted.Oneinterestingpossibilitywould be
to tie thevariableinstantiationsto eventsin theworld. For example,thepolaritiesof variablescould
dependon theoutcomesof sportingevents,perhapsincorporatingpoint spreadsto insurea roughly
50-50split.

4.1 Measuring difficulty

As mentioned,thebid-askspreadencodesboundson )*Q,�)�*R.10
2�3 4 . A largerbid-askspreadmay
signala moredifficult problem,sinceagentsareunableto zeroin on . . Thenthe market givesnot
only a boundon thenumberof solutions,but alsoanestimateof problemdifficulty.

Pricesin thebasicSAT market of Section3 alsoreflectproblemdifficulty, sinceif the problem
is too hard to solve, the securitywill cashout at $0. However, it is nearly impossibleto untangle
the influenceof problemdifficulty from thepotentialthat theproblemis unsatisfiable.On theother
hand,if a trustedsourcespecificallygeneratesproblemswith exactly onesolution,all biddersknow
that thereis a solution,andnoneof themknow thesolutionitself, thenpricesbelow $1 only reflect
uncertaintyin whetherthesolutionwill befound.



4.2 Impr eciseprobabilities

Most axiomaticjustificationsfor subjective probabilitiesinsist thatagentsmaintainpoint probabili-
ties. So if an agent’s probability that a coin turnsup headsis 0.5, then it will be willing to buy at
leastsomesmall amount(perhapsmuchlessthanoneunit) of a security“$1 if f heads”for $0.499,
andit will bewilling to sell somesmallamountfor $0.501.And if thesameagent’sprobability that
a stockpricewill go up is 0.5, it will do exactly the same,even thoughonemight imaginethat the
agentis more confidentin the probability assessmentfor the coin. Other theoriesdistinguishbe-
tweenuncertaintyandignorance,sothatanagentmaybewilling to betmoreon thecoin thanon the
stock. Many researchersstudy impreciseprobabilities, whereagentsmaintainprobability intervals
to encode“uncertaintyambiguity” insteadof singularpoint estimates[6]. If a SAT countingmarket
exhibitedvaryingbid-askspreadsbasedon problemdifficulty, thatmight constitutea form of empir-
ical (if indirect)evidencefor theexistenceof impreciseprobabilities—andthusirrationality—among
participatingagents.

5 Bayesianinference

Bayesianinferenceis #P-completeandis intimatelyrelatedto theSAT countingproblem[5]. Bayesian
inferencemarketsmight operateas follows. An instanceof a Bayesiannetwork is postedon the
Web in a standardformat. A securityis thenofferedfor a particularinferencequery; for example,
� � � � � �S� ��T>�

. Payoffs aredeterminedbasedon eitheroneor ( randominstantiationof all network
variables,in accordancewith thegivenconditionalprobability tables.Accordingto thesemanticsof
conditionalsecurities,if theevidencevariablesin thequery(

� �U� ��	T
in theexample)do not occur,

thenall buyersandsellersreceiverefundspreciselyasif tradinghadnevertakenplace.If theevidence
variablesdo occur, thenthesecuritypaysoff $1 if f thenon-evidencevariablein thequery(

� �
in the

example)occurs.
Similar to SAT countingmarkets,if thebid (ask)priceis greaterthan(lessthan)theexactproba-

bility of thequery(perhapsmodifiedaccordingto ( ), thenselling(buying) thesecurityis worthwhile
for risk-neutralrationalagents.Thenthebid-askspreadwill tendto convergearoundthetrueprob-
ability, providing approximateboundsfor the inferenceproblem.Again, thesizeof thespreadmay
correlatewith problemdifficulty.

5.1 Speedof evidenceincorporation

An alternative way to handleevidencewould be to incorporateit into the instantiationstep: when
variablesin the network are instantiated,evidencevariablesareforcedto their given state,andall
biddersknow this in advance. The query securityis a standardsecurityratherthana conditional
one.Continuingwith theaboveexample,thequerysecurityis just � � � �

andvariablesareinstantiated
stochasticallyunder the constraintthat

�	�
is true and

� T
is false. This approacheliminatesthe

possibilitythatall betsarecanceled,thoughonly allowsoneevidencesetto beevaluatedat a time.
It is alsopossibleto announceevidenceinstantiationsin themiddleof trading,forcing (rational)

agentsto revisetheirexpectations,andthuschangingthepriceof thequerysecurityto reflectthenew
evidence.Economistsareinterestedin how quickly evidenceis incorporatedinto market prices(the
efficientmarketshypothesisassertsthatit is essentiallyinstantaneous).Howeverin mostmarkets,it is
verydifficult to controlonly for changesin evidence,sincesomany otherfactorsareatplay. Bayesian
inferencemarketsmayprovide anappropriateenvironmentin which to examinesuchquestionsin a
verycontrolledmanner. In addition,thespeedof evidenceincorporationmaydependonthedifficulty
of theinferenceproblem,constitutingevidenceof boundedrationalityamongagentsin themarket.



6 Mor evariations and other issues

6.1 Solver takesall

In the SAT marketsof Section3, all buyersreceive a payoff regardlessof who actuallysolvesthe
problem.An alternativeframework wouldbeto payonly thefirst agentto submitasolution.Presum-
ablyonly sellerswhowereunlucky enoughto transactwith thewinningagentwould losemoney. It’s
not clearhow this would affectpricesor theinterpretationof prices.Perhapspriceswould fall, since
sellersdon’t necessarilylosemoney whena solutionis found, so would tendto sell more. Lower
priceswould make it a moreattractive prospectfor buyers;however, buyersdon’t necessarilywin
evenwhenasolutionis found.

Anotherpossibility is simply to allow subsidizersto contributeto a “pot” for eachproblem,with
theentirepot going to thefirst agentto solve theproblem.This variationis simply a contestwhere
payoffs dependon subsidizers’interests.

6.2 Optimization problems

Marketsin optimizationproblemslikethetravelingsalesmanproblemarealsopossible.For example,
securitiesof theform “$1 iff a tourof lengthlessthan V is found” wouldoperatejustasSAT markets.
Otherpossibilitiesinclude:

W only thefirst agentto submita tour of lengthlessthan V is paid,

W all agentsthatsubmittoursof lengthlessthan V arepaid,

W only theagentthatsubmitsthebestsolutionis paid,and

W only agentsthatsubmitsolutionsimproving on thecurrentbestsubmissionarepaid.

Again,theeffectonpriceundereachof thesevariationsis unclear. Perhapssometypesof marketsare
easierto subsidizethanothers.Or perhapssomeprovidegreaterincentivesfor algorithmdevelopers,
or aremoreattractive to speculators.

6.3 An agentplayground

It is likely thatpeoplewould interactwith themarket mostlyvia agentsurrogates.Agentprograms
would downloadproblemsdaily, attemptto solve theproblems(perhapsduringotherwiseidle com-
putertime),andtransactin themarketsaccordingly. Thereis roomfor bothsimpletradingstrategies
thatexploit arbitrageopportunitiesonly, andmoresophisticated(andspeculative) strategiesthatat-
temptto maximizeexpectedutility acrossmultiple markets.

6.4 Play-moneymarkets

Throughoutthis paperwe have assumedthat payoffs aredenominatedin real money (e.g.,US dol-
lars),thusproviding monetaryincentivesto agents.However, significantregulatoryandlegalhurdles
would have to beovercomebeforeany real-money NP marketscouldbeestablished.A play-money
versionwould bemucheasierto setup andoperatein theshortterm. In this case,incentiveswould
presumablyderivefrom entertainmentvalue,educationalvalue,braggingrights,and/orotherintangi-
blesources.Ourrecentstudy[18, 19] suggeststhatintangiblerewardscan(to someextent)still drive
informationaggregationandforecastaccuracy in markets. Soplay-money NP marketsmight afford
someof thesamebenefitsasrealNP markets,at leastuntil permissioncanbeobtainedfor thelatter.



7 Relatedideas

Several researchersare investigatingthe possibility of solving hardproblemsby coordinatingdis-
tributedcomputersacrosstheInternet.For example,NASA developedascreensaverapplicationthat
pullsSETIdatafrom NASA’sWebsite,analyzesit locally, andsendsbacktheresults.13

Researchershave alsoproposedopeningmarket in CPU cycles. Examplesincludethe Popcorn
Market [25], theComputePower Market [4], andtheJava Market [1]. NP marketswould in a sense
solicit CPU cyclesto solve particularproblemsof interest(andencouragealgorithmdevelopment),
ratherthansellCPUcyclesfor arbitraryprivatetasks.

Brewer[3] devisesanotherinterestingschemeto incentdistributedagentstosolveanNP-complete
optimizationproblem—inthiscase,to computeaParetooptimalallocationin acombinatorialauction.
Traditionally, theauctioneercarriesout thecomputation.Brewersuggestsinsteadaprocedurewhere
biddersin theauctionmustsettlefor thecurrent(possiblyParetodominated)allocationunlesssome-
onedemonstratesthata bettersolution,with smallertotal consumersurplus,exists. Bidderswhose
utilities increasein theimprovedsolutionhaveincentiveto reportthesolutionif known. Biddersmay
alsoreceive a percentageof the improvementwhenthey reporta bettersolution,with percentages
increasingastheauction’sclearingtimeapproaches.

8 Conclusion

I discussedthe promise(andsomepotentialpitfalls) of openingmarketsin hardcomputationprob-
lems. I describedmarketsin SAT problems,SAT countingproblems,andBayesianinferenceprob-
lems,thoughanalogousmarketscouldbeopenedin almostany NP-completeor #P-completeprob-
lem. Themarketsserveasavehiclefor subsidizingalgorithmsresearch,whererewardsgodirectly to
thebestperformersinsteadof thebestsolicitors.Pricesin themarketsarecollectiveapproximateso-
lutions,andbid-askspreadssignalproblemdifficulty. Certainmarketsseemwell suitedfor empirical
studiesof thespeedof informationaggregation,boundedrationality, andimpreciseprobabilities.
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