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As a whole, the World Wide Web displays a striking “winners take
all” or “rich get richer” character, with a relatively small number of sites
receiving a disproportionately (and increasingly) large share of hyper-
link references (1, 2, 3, 4) and traffic (5, 6, 7). Hidden in this skewed
global distribution, however, we discover a qualitatively different, and
considerably less biased, link distribution among pages of the same
category—for example, among all university homepages or all news-
paper homepages. While the connectivity distribution over the entire
web is close to a pure power law, the distribution within specific cat-
egories is typically unimodal on a log scale, with the location of the
mode, and therefore the extent of the “winners take all” phenomenon,
varying across different categories. Similar distributions occur in many
other naturally-occurring networks, including research paper citations,
movie actor collaborations, and US power grid connections (2, 8). We
present a generative model, incorporating a mixture of preferential
and uniform attachment, that quantifies the degree to which the rich
nodes in a network grow richer, and how new (and poorly-connected)
nodes can compete. The model accurately accounts for the true con-
nectivity distributions of category-specific web pages, the web as a
whole, and other social networks. As commerce and communication
move to the web, the dynamics of link accumulation—at both global
and local granularities—can have a significant effect on competition
and diversity throughout business and society. Our model may be
used to study a variety of networks and communities, for example, by
predicting growth patterns based on a static snapshot, or by inferring
the degree of “winners take all” behavior within various communities.
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TheWorld Wide Webis a reflectionof humanculture—amassive socialnet-
work encodingassociative links amongalmost �	��
 documents(9) authoredby
millions of peopleandorganizationsaroundthe globe. The web’s structurehas
emerged without centralplanning,the resultof a bottom-updistributed process.
Perhapssurprisingly, then,many aggregateweb characteristicsdisplaya striking
degreeof regularity (10), includingthedistributionsof traffic (5, 6), pagespersite
(11), file sizes(12, 13, 14), anddepthto which a web usersurfs(7). Several in-
dependentinvestigationsshow that thedistribution of thenumberof links to (and
from) a webpageobeys a power law over many ordersof magnitude(1, 2, 3, 4).
Powerlaw scalingarisesfrom avarietyof physical,biological,andsocialprocesses
(2, 15, 16, 17). Theemergenceof a power law tail seemsto characterizethecon-
nectivity distribution of many networksin additionto theweb,includingthegraph
of movie actorcollaborations,thepatternof researchpapercitations,thetopology
of thepowergrid in thewesternUnitedStates,andthemetabolicnetworksof many
microorganisms(2, 8, 18, 19).

The probability that a web pagehas � links is proportionalto ���� for large� , where � is a constant,empiricallydeterminedasroughly ����� for inboundlinks
and ������� for outboundlinks (3). Whendisplayedon a log-log plot, this so-called
power law distribution appearslinear with slope ��� . A power law distribution
hasa heavy tail, which dropsoff muchmoreslowly than the tail of a Gaussian
distribution. As a result,althoughthevastmajority of web pageshave relatively
smallnumbersof links, a few pageshave enormousnumbersof links—enoughto
skew themeanwell above themedian.If we interpretthenumberof inboundlinks
to a web pageasa measureof its popularityor impact, thenpower law scaling
implies a “winners take all” scenario: a small fraction of web pagesreceive a
disproportionatelylarge shareof the total numberof inboundlinks. As a result,
thesefew popularpagestypically benefitfrom agreatervolumeof traffic from web
surfers,ahigherprobabilityof beingindexedin searchenginedatabases,andmore
prominentrankingwithin searchengineresults.Theweb’spowerlaw naturemeans
thata majority of sitessuffer from relatively poorvisibility, andnew commercial
sitesmayhave adifficult timecompetingfor consumerattention.

Barab́asi andAlbert (2, 20) attribute power law scalingto a “rich get richer”
mechanismcalledpreferentialattachment:asthe network grows, the probability
that a given vertex receives an edgeis proportionalto that vertex’s currentcon-
nectivity. Albert andBarab́asi(21) generalizetheiroriginalmodelto incorporatea
mixtureof network processes,includingedgeadditions,edgerewirings,andvertex
additions. Adamic andHuberman(22) give an alternative explanationfor power
law behavior by adaptingtheirmodelof thegrowth of websites(11) to thecaseof
web links. Kleinberg et al. (23) proposea modelwheresomeedgesareaddedat
randomandsomearecopiedfrom existingvertices.
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Obscuredbehind the nearly-purepower law distribution found for inbound
links on thewebasa whole,we uncover a richerstructureamongsubsetsof web
pagesin thesamecategory. We find that thesecategory-specificdistributionsex-
hibit verylargedeviationsfrom power law scaling,with themagnitudeof deviation
varyingfrom categoryto category. Thusthe“winnerstakeall” characterof theweb
canactuallybemuchlessdrasticamongcompetingpagesof thesametype. In fact,
purepower law scalingseemsto betheexceptionratherthantherule. Thedistri-
butions for outboundweb links, and for a variety of othersocial andbiological
networks,alsodisplaysignificantdeviationsfrom power law, qualitatively similar
in natureto thosewefind for websubsets(1, 2, 3, 4, 8, 18).

Weexaminedtheinboundlink distributionsfor asetof publiccompany home-
pages(obtainedfrom http://www.investorguide.com/StockListA.htm,

StockListB.htm, etc.),asetof Americanuniversityhomepages(fromhttp://

www.clas.ufl.edu/CLAS/american-universities.html),asetof USnews-
paperhomepages(from http://www.usnewspaperlinks.com/), anda setof
scientisthomepages(from HPSearch(24) at http://hpsearch.uni-trier.
de/hp/). Diamond-shapedpointsin Figure1 graphtheconnectivity distribution
for company homepagesasa log-linearhistogram,usingexponentiallyincreasing
bucket widths, or constantwidths on the log scale. Although the tail of the dis-
tribution continuesto fit a power law, thebodyappearsroughlylognormal,with a
sharpandsingularmode.

Diamondsin Figure2 displaytheconnectivity distributionsof company home-
pages,university homepages,scientisthomepages,andnewspaperhomepageson
log-log scales.All four displaythe samequalitative shape—unimodalbody and
power law tail—althoughthemodesvary amongthedifferentcategoriesof pages.
Heavy tails indicatethat a handfulof popularpagesstill gain a disproportionate
percentof all inboundlinks. Nevertheless,amonglesspopularweb pagesof the
sametype, thedistribution of inboundlinks is moreevenly balanced.Many web
pagescanfarewell whencomparedagainstthemodeof all competingpageswithin
thesamecategory.

We proposea generative model of network growth to explain the observed
connectivity distributionsfor theweb,for webcategories,andfor othersocialnet-
works. As in the Barab́asi-Albert (BA) model (2), the network begins with ���
vertices.At eachtime step� , onevertex and � edgesareaddedto thenetwork. In
theBA model,all � edgesconnectfrom thenew vertex to anold vertex according
to preferentialattachment:the probability �! "��#%$ that an edgeconnectsto vertex&

is � #('*),+ � + , where � # is the currentnumberof edgesincidenton vertex
&
, and

thesummationis overall old vertices.Noticethat,in theBA model,no vertex can
have fewer than � edgesexcept thosein the initial seedset. BA networks tend
to grow asa singleconnectedcomponentcontainingall vertices. In contrast,the
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so-called“bow tie” characterizationof theweb’s structure,basedon a largescale
empiricalstudy, suggeststhataboutonequarterof thewebis disconnectedfrom a
dominantconnectedcore(3).

We introduceinto themodelthenaturalintuition thatevery vertex hasat least
somebaselineprobabilityof gaininganedge.To thisend,bothendpointsof edges
arechosenaccordingto a mixtureof probability - for preferentialattachmentand�.�/- for uniform attachment.The probability that an endpointof a new edge
connectsto vertex

&
is �. "�0#%$213- ��#�4�5� 6  7�8�9-:$ ���� 6 � � (1)

Note that ��� 6 � is the total numberof verticesand �4�5� the total connectivity at
time � . In this augmentedmodel,edgeendpointsarechosensymmetrically, rather
thanpinnedto thenewestvertex. Solitaryverticesarenot destinedto remainfor-
ever disconnected,andthereis no discontinuityin theconnectivity distribution at�;1<� . Simulations,with - setto roughlymatchwebdata,resultin networkswith
aboutseventy percentof verticesin a dominantconnectedcomponent,in reason-
ableagreementwith thebow tie characterization(3). Underpreferentialattachment
alone,sitesthatarealreadyrich in links tendto getricher, resultingin apurepower
law distribution overconnectivities. Ontheotherhand,with theadditionof acom-
ponentfor uniform attachment,thepoorersites(with someluck) cangetrich too,
leadingto aconnectivity distribution morein line with empiricalevidence.

We generateda simulatednetwork using(1), with parameterssetto modelthe
company homepagesdata: � and �4� areset to the actualnumberof web pages
(4923)andtheaveragenumberof inboundlinks perpage(2712),respectively. The
seedsetsize ��� is setto zero.Theonly tuningparameter, - , is optimizedusinga
non-linearregression.Circlesin Figure1 plot theresultingconnectivity histogram,
whichcorrespondsvery well with thetruedistribution.

We derive in closedform thedistribution implied by (1), by applyinga mean-
field approximationtechniquesimilar to that employed by Barab́asi and Albert
(20). Weassumethat � is continuousandthat �! "��#%$ is thegrowth rateof �0# . Then,= ��#= � 1/>?�! "��#%$21/>@- ��#�4�5� 6 >! 7�8�A-B$ ���� 6 � � (2)

Since �! "��#%$ sumsto one,andthe total connectivity increaseper time stepis �4� ,> mustequal �4� . For the remainderof the derivation we assumethat �DC ��� .
Substitutingin for > , we find that,= ��#= � 13- ��#� 6  7�8�9-:$ �4� � �
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Usingtheinitial conditionthatvertex
&

beginsat time � # with no incidentedges,or��#E F�G#($21/� , �0#E F��$21H�4� I �J�9-- K<L �7MN�O�7M#� M# P �
Thentheprobabilitythatvertex

&
’s connectivity ��#E F�E$ is lessthan � isQ2R  "�0#� F�E$TSU�V$21 Q2RXWY �G#*Z[�]\ �4�9 7�]�A-:$-:� 6 �4�9 7�8�9-:$4^T_`bac 1d���e\ �4�9 7�J�9-B$-:� 6 �4�9 7�J�9-B$f^T_`!g

(3)
wherethe last stepassumesthat verticesare addedat equaltime intervals, and
thusthattheprobabilitydensityof �G# is uniform,or

Q2R  F�h#"$�1i� ' � . Theprobability
densityof � is thepartialderivative of thecumulative distribution (3) with respect
to � . Q2R  "�V$21 = QjR  "� #  F��$kSU�V$= � 1mln�4�9 7�J�o-:$%p _` ln-:� 6 �4�9 7�8�9-:$%p  �  _` (4)

In the limit as �rq s , the density
Q2R  "�V$ is proportionalto � ut �Gvw�Gx M0y , or a

power law with exponent�U1z� 6 � ' - . For example,if -H1{� ' � , then �|1~} ,
thesameaspredictedin theBA model.Mixture parameters- of 0.909and0.581
yield exponentsof 2.1 and2.72,respectively, theempiricallyobserved exponents
for inboundandoutboundweblinks (3).

Our log-scalehistogramsin Figures1 and2 employed exponentiallyincreas-
ing bucket sizes. We canperform an analogoustransformationof the probabil-
ity density(4), in orderto facilitatecomparisonon log-scaleplots. We substitute�<1��	����� x7� into the cumulative distribution (3), take the derivative with respect
to ��� , andsubstitutebackusing ���]1��B����� � � � . The resultingfunction displays
the instantaneousprobability massat each � , wherethe widths of the infinitesi-
mal “buckets” ��� areconstanton the logarithmicscale.This transformeddensity�Q2R  "�V$ , suitablefor log-scalevisualization,is�Q2R  "�V$21 �����	�� � ln�4�9 7�]�9-B$%p _` � � � l�-:� 6 �4�9 7�8�9-B$%p  �  _` � (5)

Themaximumof this function,correspondingto themodeof thedistribution on a
log scale,occursat ��1d�4�9 7�@�o-B$ . The locationof themodeis directly propor-
tional to � , therateof edgeadditionspertimestep.If -O1d� ' � , for example,then
themodeis simply � , or thenumberof edgesaddedpervertex. As thegrowth rate
of edgesincreasesascomparedto vertices,themodeshiftstowardhigherconnec-
tivities � . As themixtureparameter- approachesone,or as � approacheszero,
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thedistribution approachesapurepower law, andthemodeappearsatmuchlower
connectivities.

Albert andBarab́asi(21) have independentlyproposedadifferentextensionof
theBA model.Their augmentedmodelinvolvesa parameterizedmixtureof three
processes:vertex additions,edgeadditions,andedgerewirings. As in the origi-
nal BA model,all new verticesbegin with � edges.The new modelalsoallows
for internaledgeadditions.Theseadditionsareasymmetric:oneedgeendpointis
chosenuniformly andtheotherpreferentially. Notethat this assumptiondoesnot
seemto hold for theweb,sinceboth inboundandoutboundlink distributionsfol-
low a power law. Edgeendpointsubtractions—dueto rewiring—arealsochosen
uniformly. Thecombinationof thesethreeprocessesleadsto aconnectivity growth
functionsimilar in form to (2)—roughlyasumof uniform andpreferentialterms.

The dashedline in Figure1 graphs(5), where � , � � , � , and - aresetto the
samevaluesasin thecompany homepagessimulation.Theclosenessof fit between
theanalyticsolutionandthesimulationreflectstheaccuracy of themean-fieldap-
proximation.Figure2 illustratesthefit betweenour modelandtheactualconnec-
tivity distributions for company, university, newspaper, andscientisthomepages.
Thefigureoverlayswebdata,simulationdata,andthemean-fieldsolution(5) for
thefour setsof webpageson log-log scales.In all four cases,themodeldistribu-
tions fit very closelyto the true distributions,capturingthe sameunimodalbody
andpower law tail observed in the data. Note that the only tuning parameter, - ,
affectsboththemodeandtheslopeof thetail, yet a singlebest-fit - capturesboth
dimensionswell. We alsocomputeddistributionsfor inboundandoutboundlinks
for thewebasa whole,usinga collectionof 100,000pseudo-randomwebpages,
sampledfrom roughly onebillion URLs in Inktomi Corporation’s webmap.Our
modelfits thesedistributionscloselyaswell; moreover, themixtureparameters-
imply power law slopes��1m� 6 � ' - preciselyin line with previousmeasurements
(3). Table1 reportsthemodes,best-fitparameters- , andpower law exponents�
for thefour datasetsandfor thewebasa whole.

The addition of pagesand links to the web is a distributed, asynchronous,
complex andcontinualprocess:to anoutsideobserver, fine-grainedchangesmust
appearalmosthaphazard.Yet, whenexaminedon the large, discerniblepatterns
emerge (3, 5, 7, 10, 11, 12) someof which aresharedwith othersocialandbi-
ological networks (2, 18, 19). Improved tools for measuring,characterizing,and
modelingthe web will have significantscientific, social, and commercialvalue
(23). Beyondtheweb,understandingcommonalitiesamongdiversenetwork types
promisesto enrich our understandingof the evolution of social and ecological
structures.
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dataset mode - �
universities 839 0.612 2.63
companies 136 0.950 2.05
newspapers 87 0.948 2.05
weboutlinks 8 0.581 2.72

scientists 7 0.602 2.66
webinlinks 0 0.909 2.10

Table 1: Mixture parameters - , modes �4�9 7�k�A-B$ , and power law tail expo-
nents ��1~� 6 � ' - for inbound links to category-specific homepages, and
for inbound and outbound links on the web as a whole. The web inlink and
outlink exponents � match precisely with Broder et al.’s (3) measurements.
The distribution of links to university homepages exhibits the largest devia-
tion from a power law; on the other end of the spectrum, the distribution of
inbound links on the web as a whole is closest to a pure power law. In all
cases studied, mixture parameters - are greater than 1/2. Thus preferen-
tial attachment appears to play a larger role in web link growth than does
uniform attachment. The growth of links to company homepages and to
newspaper homepages is most dominated by the “rich get richer” process
of preferential attachment, while link growth on scientist homepages and
university homepages suggests a more balanced mixture of preferential
and uniform terms.
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Figure 1: Diamonds indicate a histogram of the number of inbound links to
company homepages. Pages are placed into buckets according to the num-
ber of their inbound links. Buckets are of exponentially increasing width, or
constant width on the log scale—the same histogram type used in charac-
terizing web file sizes (12, 13), though different than employed in some pre-
vious studies (2, 11). Specifically, the � th bucket point marks the probability
that the number of links to a page falls between �	�����7�8�r� and �	�������w�G���7�8�[� .
The distribution has a sharp and singular mode, indicating that a plurality
of company homepages have between 99 and 146 inbound links. Circles
display the histogram resulting from a simulation of our model, with param-
eters set to match the company data: �J 3¡£¢�¤�¥ is set to the actual number
of pages, ¦�§ is set to zero, ¤4¦  z¤£¨©�ª¤ is set to the average number of
inbound links per homepage, and «O /�¬®¢�¯�� is set according to a non-linear
least-squares fit of the analytic solution (5) to the data. Multiple edges be-
tween two vertices are allowed, though self-edges are not. The dashed line
marks the analytic solution (5) instantiated with the same parameters.
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Figure 2: Diamonds display log-log histograms of inbound connectivities
for category-specific homepages, and inbound and outbound connectivi-
ties for random web pages. Circles mark the connectivity distributions for
corresponding simulations, with � � 1m� , � set equal to the number of web
pages, �4� set equal to the average number of inbound links per page, and- chosen according to a non-linear least-squares fit. Dashed lines indicate
the analytic solutions (5). 10


