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As a whole, the World Wide Web displays a strik-
ing “rich get richer” behavior, with a relatively small
number of sites receiving a disproportionately large
share of hyperlink references [1, 2, 3, 4] and traf-
fic [5, 6, 7]. However, hidden in this skewed global
distribution, we discover a qualitatively different and
considerably less biased link distribution among sub-
categories of pages—for example, among all univer-
sity homepages or all newspaper homepages. While
the connectivity distribution over the entire web is
close to a pure power law, we find that the distribu-
tion within specific categories is typically unimodal
on a log scale, with the location of the mode, and
thus the extent of the “rich get richer” phenomenon,
varying across different categories. Similar distribu-
tions occur in many other naturally-occurring net-
works, including research paper citations, movie actor
collaborations, and US power grid connections [2]. A
simple generative model, incorporating a mixture of
preferential and uniform attachment, quantifies the
degree to which the rich nodes grow richer, and how
new (and poorly-connected) nodes can compete. The
model accurately accounts for the true connectivity
distributions of category-specific web pages, the web
as a whole, and other social networks.

The World Wide Web is a reflection of human culture—a
massive social network encoding associative links among al-
most 10° documents [8] authored by millions of people and
organizations around the globe. The web’s structure has
emerged without central planning, the result of a bottom-up
distributed process. Yet many aggregate web characteristics
display a striking degree of regularity [9], including the distri-
butions of traffic [5, 6], pages per site [10], file sizes [11, 12],
and depth to which a web user surfs [7]. Several independent
investigations show that the distribution of the number of
links to (and from) a web page obeys a power law over many
orders of magnitude [1, 2, 3, 4]. Power law scaling arises
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from a variety of physical, biological, and social processes
[2, 13, 14, 15]. The emergence of a power law tail seems to
characterize the connectivity distribution of many networks
in addition to the web, including the graph of movie actor
collaborations, the pattern of research paper citations, the
topology of the power grid in the western United States, and
the metabolic networks of many microorganisms [2, 16, 17].

Barabdsi and Albert [2, 18] attribute power law scaling
to a “rich get richer” mechanism called preferential attach-
ment: as the network grows, the probability that a given ver-
tex receives an edge is proportional to that vertex’s current
connectivity. Adamic and Huberman [19] give an alternative
explanation for power law behavior by adapting their model
of the growth of web sites [10] to the case of web links.

Obscured behind the nearly-pure power law distribution
found for inbound links on the web as a whole, we uncover
a richer structure among subsets of web pages in the same
category. We find that these category-specific distributions
exhibit very large deviations from power law scaling, with
the magnitude of deviation varying from category to category.
For these subsets of the web, we illustrate that the body of
the distribution of incoming links is actually unimodal, rather
than power law. Thus the “rich get richer” character of the
web can be much less drastic among competing pages of the
same type. In fact, pure power law scaling seems to be the
exception rather than the rule. The distributions for out-
bound web links, and for a variety of other social and biolog-
ical networks, also display significant deviations from power
law, qualitatively similar in nature to those we find for web
subsets [1, 2, 3, 4, 16].

We employ a generalized Barabési-Albert (BA) model (sim-
ilar to recent models independently proposed elsewhere [20,
21, 22, 23]) that incorporates both preferential attachment
and a uniform baseline probability of attachment. The model
predicts the observed shape of both the body and tail of
typical connectivity distributions, including those observed
within specific categories of web pages where the divergence
from power law is especially marked. In the model, larger



modes arise from faster rates of growth of edges as compared
to vertices, suggesting an explanation for the different modes
observed within different categories of web pages.

Generic vs. Category-Specific Degree
Distributions

Several studies find that the probability that a randomly se-
lected web page has k links is proportional to £~ for large
k [1, 2, 3, 4], where 7 is a constant, empirically determined
as roughly 2.1 for inbound links and 2.72 for outbound links
[3]. When displayed on a log-log plot, this so-called power law
distribution appears linear with slope —v. A power law dis-
tribution has a heavy tail, which drops off much more slowly
than the tail of a Gaussian distribution. As a result, although
the vast majority of web pages have relatively small numbers
of links, a few pages have enormous numbers of links—enough
to skew the mean well above the median. If we interpret the
number of inbound links to a web page as a measure of its
popularity or impact, then power law scaling implies that a
small fraction of web pages receive a disproportionately large
share of such endorsements. As a result, these few popular
pages typically benefit from a greater volume of traffic from
web surfers, a higher probability of being indexed in search en-
gine databases [8], and more prominent ranking within search
engine results. Meanwhile, the majority of sites suffer from
relatively poor visibility and new commercial sites may have
a difficult time competing for consumer attention. This state
of affairs on the web has been referred to (metaphorically, if
somewhat inaccurately) as a “winners take all” phenomenon.

At small connectivities k, the distribution of links on the
web fails to fit a power law, with the discrepancy larger for
outbound links than for inbound links [3]. Systematic diver-
gence from power law scaling at small £ is also seen in the
connectivity distributions of graphs encoding actor collabo-
rations, the western US power grid, scholarly citations, and



outbound links from several subsets of the web [2].

Moreover, for some collections of web pages of the same
type, we find that the distribution of inbound links departs
drastically from a power law at small and moderate k. We ex-
amined the inbound link distributions for a set of public com-
pany homepages (Obtained from http://www.investorguide.com/
StockListA.htm, StockListB.htm, etc.), a set of American uni-
versity homepages (from http://www.clas.ufl.edu/CLAS/american-
universities.html), a set of US newspaper homepages (from
http://www.usnewspaperlinks. com/), and a set of scientist home-
pages (from HPSearch at http://hpsearch.uni—trier.de/hp/).
Diamond-shaped points in Figure 1 graph the connectivity
distribution for company homepages as a log-linear histogram.
Pages are placed into buckets according to the number of their
inbound links. Buckets are of exponentially increasing width,
or constant width on the log scale—the same histogram type
used in characterizing web file sizes [11], though different than
employed in some previous studies [2, 10]. Specifically, in Fig-
ure 1, the ith bucket point marks the normalized number of
pages with between 107/% — 1 and 10¢+1/6 — 1 inbound links.
Although the tail of the distribution continues to fit a power
law, the body appears roughly lognormal, with a sharp and
singular mode, indicating that a plurality of company home-
pages have between 99 and 146 inbound links.

Diamonds in Figure 2 display the connectivity distribu-
tions of company homepages, university homepages, scientist
homepages, and newspaper homepages on log-log scales. All
four display the same qualitative shape—unimodal body and
power law tail—although the modes vary among the different
categories of pages. Heavy tails indicate that a handful of
popular pages still gain a disproportionate percentage of all
inbound links. Nevertheless, among less popular web pages
of the same type, the distribution of inbound links is more
evenly balanced. Many web pages can fare well when com-
pared against the mode of all competing pages within the
same category. Relative to their community, winners don’t
quite “take all”. Losing sites and mediocre sites attract a
considerably higher proportion of links than would be the
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case under a pure power law distribution.

It is an open question exactly how peaked distributions for
subsets of the web like those in Figures 1 and 2 sum together
to produce the nearly pure power law for the web as a whole.
We conjecture that the vast majority of subsets (or subsets
containing the vast majority of pages) exhibit a nearly zero
mode and dominate this sum, though more investigation is
needed.

Network Growth Model

Generative process description. We employ a generative
model of network growth to explain the observed connectivity
distributions for the web, for web categories, and for other
social networks. The model is similar to other generalized
BA models recently developed independently by other au-
thors [20, 21, 22, 23]. The network begins with mg vertices.
At each time step t, one vertex and m edges are added to
the network. In the BA model, all m edges connect the new
vertex with an old vertex according to preferential attach-
ment: the probability T1(k;) that an edge connects to vertex i
is ki/ >; k;, where k; is the current number of edges incident
on vertex ¢, and the summation is over all old vertices.

We presume instead that every vertex has at least some
baseline probability of gaining an edge. Both endpoints of
edges are chosen according to a mixture of probability o« for
preferential attachment and 1 — « for uniform attachment.
The probability that an endpoint of a new edge connects to
vertex % is

ki
(k;) = e +(1—«)

mo + t’ (1)
where mg + ¢ is the total number of vertices and 2mt¢ the
total connectivity at time t. Edge endpoints are chosen sym-
metrically, rather than pinned to the newest vertex. Solitary
vertices are not destined to remain forever disconnected. Un-
der preferential attachment alone, sites that are already rich



in links tend to get richer, resulting in a nearly pure power law
distribution over connectivities. On the other hand, with the
addition of a component for uniform attachment, the poorer
sites (with some luck) can get rich too. Intuitively, the two
growth components can be viewed as capturing two common
behaviors of web page authors: (a) creating links to pages
that the author is aware of because they are popular, and (b)
creating links to pages that the authors is aware of because
they are personally interesting or relevant, largely idependent
of popularity.

We generated a simulated network using (1), with param-
eters set to model the company homepages data: ¢ and 2m
are set to the actual number of web pages (4923) and the av-
erage number of inbound links per page (2712), respectively.
The seed set size mg is set to zero. The only tuning param-
eter, o, is set according to a non-linear least-squares fit of
the analytic solution (3) to the data (resulting in a = 0.950).
Multiple edges between two vertices are allowed, though self-
edges are not. Circles in Figure 1 plot the resulting connec-
tivity histogram, which corresponds very well with the true
distribution. Circles in Figure 2 display simulation results
for all four data sets on log-log scales, again showing good
agreement with empirical measurements.

Notice that the simulation builds a graph among subset
members only, while empirical data includes inbound links
originating from the entire web. There are two ways to in-
terpret the model to reconcile this difference. First, one can
think of the model as a prescription not for graph generation,
but simply for connectivity growth, where each vertex incre-
ments its connectivity independently according to (1); this is
the same abstraction adopted in other models [20, 22]. Sec-
ond, one can interpret an edge between vertex ¢ and vertex j
as a path between ¢ and j, possibly traversing outside subset
boundaries (with both endpoints being inbound links).

Finally, we note that the model can be easily generalized
into a directed graph model. Two parameters oy, and a,,; en-
code mixture probabilities for inbound and outbound links.
The source of each new edge is chosen according to (1) using
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Oyt and the destination according to (1) using «y,. Simu-
lation and analytic results describing inbound (or outbound)
connectivity growth are unaffected by this modification, mod-
ulo a factor of two.

Analytic solution. Using a continuous mean-field ap-
proximation similar to that employed by Barabési and Albert
[18], we can derive the connectivity distribution for the model
in closed form. Assuming that ¢ > my, the probability that
a vertex has connectivity k is

Pr(k) = [2m(l — o)) [ok +2m(1—a)] V& (2)

In the limit as ¥ — oo, the density Pr(k) is proportional
to k=049 or a power law with exponent v = 1 + 1/a.
For example, if & = 1/2, then v = 3, the same as predicted
in the BA model. Mixture parameters a of 0.909 and 0.581
yield exponents of 2.1 and 2.72, respectively, the empirically
observed exponents for inbound and outbound web links [3].
Other values for « yield alternative power law exponents.

Our log-scale histograms in Figures 1 and 2 employed ex-
ponentially increasing bucket sizes. We can perform an anal-
ogous transformation of the probability density (2), in order
to facilitate comparison on log-scale plots. We substitute & =
10%'/6 into the cumulative distribution, take the derivative
with respect to k', and substitute back using k' = 6log, k.
The resulting function displays the instantaneous probability
mass at each k, where the widths of the infinitesimal “buck-
ets” dk are constant on the logarithmic scale. This trans-
formed density Pr(k), suitable for log-scale visualization, is

Br(k) = 1n610 2m(1 = a))F k- [ak+2m(l — )75 . (3)

The maximum of this function, corresponding to the mode
of the distribution on a log scale, occurs at k = 2m(1 — «).
The location of the mode is directly proportional to m, the
rate of edge additions per time step. If a = 1/2, for example,
then the mode is simply m, or the number of edges added per
vertex. As the growth rate of edges increases compared to
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that of vertices, the mode shifts toward higher connectivities
k. As the mixture parameter o approaches one, or as m
approaches zero, the distribution approaches a pure power
law, and the mode appears at much lower connectivities.

Related models. Dorogovtsev et al. [20] and Levene et
al. [22] independently propose similar generalizations of the
BA model (the addition of a uniform component), motivat-
ing it in part as a natural way to parameterize the power-law
exponent. Dorogovtsev et al. [20] solve for the exact degree
distribution, showing that BA’s mean-field approximation is
correct in determining the asymptotic power-law exponent;
the authors go on to study the connectedness properties of
the network as it grows [21]. Levene et al. [22] reformulate
the growth process in terms of an urn transfer model, en-
abling them to obtain exact solutions in certain cases. Al-
bert and Barabdsi [24] have proposed their own extension
of their original model. Their augmented model involves a
parameterized mixture of three processes: vertex additions,
edge additions, and edge rewirings. The combination of these
three processes leads to a connectivity growth function that
is roughly a sum of uniform and preferential terms. Klein-
berg et al. [23] propose a model where some edges are added
at random and some are copied from existing vertices, again
leading to a mixture of uniform and preferential influences on
network growth. Even Simon [25] in 1955 invokes a similar
process to explain Estoup-Zipf word frequency distributions.
While most authors point out that the generalized form is
flexible enough to admit any asymptotic power law exponent
in the range (2, c0), we focus on the fact that the same single
additional degree of freedom is also sufficient to explain the
often large deviation from power law behavior observed in the
low connectivity region.

Web Data and Model Comparisons

The model’s ability to fit both the body and tail of typical
degree distributions is especially evident for category-specific



web data. Figure 2 illustrates the fit between the model and
the actual connectivity distributions for company, university,
newspaper, and scientist homepages. The figure overlays web
data, simulation data, and the mean-field solution (3) for the
four sets of web pages on log-log scales; Figure 1 displays
the same information on a log-linear scale for the company
homepages. Any discrepancy between the analytic solution
and the simulation is a result of the mean-field approxima-
tion. For the simulation and the analytic solution, the model
parameters ¢ and 2m are set to the number of web pages and
the average number of inbound links per page, respectively.
The seed set size my is set to zero and « is optimized using
a non-linear regression. In all four cases, the model distribu-
tions fit very closely to the true distributions, capturing the
same unimodal body and power law tail observed in the data.

Note that the only tuning parameter, «, affects both the
mode and the slope of the tail, yet a single best-fit o cap-
tures both dimensions well. We also computed distributions
for inbound and outbound links for the web as a whole, us-
ing a collection of 100,000 pseudo-random web pages, sam-
pled from roughly one billion URLs in Inktomi Corporation’s
webmap. The model fits these distributions closely as well;
moreover, the mixture parameters a imply power law slopes
v =14 1/ precisely in line with previous measurements [3].
Table 1 reports the modes, best-fit parameters «, and power
law exponents 7 for the four data sets and for the web as a
whole.

The distribution of links to university homepages exhibits
the largest deviation from a power law; on the other end of
the spectrum, the distribution of inbound links on the web as
a whole is closest to a pure power law. In all cases studied,
mixture parameters « are greater than 1/2. Thus preferential
attachment appears to play a larger role in web link growth
than does uniform attachment. The growth of links to com-
pany homepages (o = 0.950) and to newspaper homepages
(v = 0.948) is most dominated by the “rich get richer” pro-
cess of preferential attachment, while link growth on scientist
homepages (o = 0.602) and university homepages (o = 0.612)
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suggest a more balanced mixture of preferential and uniform
terms. The model also appears consistent with the shape of
connectivity distributions reported for the graph of actor col-
laborations, the networks of western US power stations, the
citation pattern among publications, and outbound links from
subsets of the web [2]. The distribution of file sizes on the web
is also qualitatively similar to our category-specific link distri-
butions, with a lognormal body and a power law tail [11]. Pre-
vious studies characterized the body and tail separately [11];
Equation 3 (when interpreted purely as a growth model rather
than a graph generation model) serves as a single-function al-
ternative for describing the full distribution.

Conclusions

The addition of pages and links to the web is a distributed,
asynchronous, complex and continual process: to an outside
observer, fine-grained changes must appear almost haphaz-
ard. Yet, when examined on the large, discernible patterns
emerge [3, 5,7, 9, 10, 11] some of which are shared with other
social and biological networks [2, 16, 17]. For one, the dis-
tribution of the number of links to (and from) a page has
been shown to follow a power law over many orders of mag-
nitude [2, 3, 4]. We demonstrate that, among web pages of
the same type, the body of the distribution of inbound links
deviates strongly from a power law, exhibiting a roughly log-
normal shape. A generative model incorporating uniform as
well as preferential attachment explains data from the web
as a whole, as well as category-specific data from company,
university, newspaper, and scientist homepages.

As commerce and communication move to the web, the
dynamics of link accumulation—at both global and local granularities—
can strongly influence competition and diversity in business
and society. Improved tools for characterizing and modeling
these dynamics will have significant scientific and commercial
value [23]. Beyond the web, understanding commonalities
among diverse network types promises to enrich our under-
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standing of the evolution of social and ecological structures.
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data set o  mode vy
companies | 0.950 136 2.05
newspapers | 0.948 87  2.05
web inlinks | 0.909 0 2.10
universities | 0.612 839  2.63
scientists 0.602 7 2.66
web outlinks | 0.581 8 2.72

Table 1: Mixture parameters o, modes 2m(1 — ), and power
law tail exponents v = 1+ 1/« for inbound links to category-
specific homepages, and for inbound and outbound links on
the web as a whole.
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Figure 1: Diamonds plot the empirically observed connectiv-
ity distribution for company homepages. Circles display the
histogram resulting from a simulation of the model, with pa-
rameters t = 4923, mg = 0, 2m = 1356, and a = 0.950 set to
match the company data. The dashed line marks the analytic
solution (3) instantiated with the same parameters.
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Figure 2: Diamonds display log-log histograms of inbound
connectivities for category-specific homepages, and inbound
and outbound connectivities for random web pages. Circles
mark the connectivity distributions for corresponding simula-
tions, with my = 0, ¢ set equal to the number of web pages, 2m
set equal to the average number of inbound links per page, and
a chosen according to a non-linear least-squares fit. Dashed
lines indicate the analytic solutions (3).



