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Abstract

Automated market makers are algorithmic agents that enable participation

and information elicitation in electronic markets. They have been widely and

successfully applied in artificial-money settings, like some Internet prediction

markets. Automated market makers from the literature suffer from two problems

that contribute to their impracticality and impair their use beyond artificial-

money settings: first, they are unable to adapt to liquidity, so that trades cause

prices to move the same amount in both heavily- and lightly-traded markets,

and second, in typical circumstances, they are guaranteed to run at a deficit. In

this paper, we construct a market maker that is both sensitive to liquidity and

can run at a profit. Our market maker has bounded loss for any initial level

of liquidity and, as the initial level of liquidity approaches zero, worst-case loss

approaches zero. For any level of initial liquidity we can establish a boundary

in market state space such that, if the market terminates within that boundary,

the market maker books a profit regardless of the realized outcome.
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1 Introduction

Active markets like the New York Stock Exchange provide two benefits: (1) price

takers can buy or sell at any time, and (2) observers can continually monitor

precise values of every asset. A prediction market, or any market explicitly

designed to uncover the value of an asset, relies heavily on (2) holding true. If

an asset has poor price support (i.e., no open interest, or large bid-ask spread),

then observers learn little or nothing about its value, disabling the very purpose

of the market. For example, some popular contracts on intrade.com, one of the

largest prediction markets, attract millions of dollars in trades. But thousands

of other Intrade contracts suffer from low liquidity and thus reveal little in the

way of predictive information.

Prediction markets can therefore benefit from an automated market maker:

an algorithmic trader that always stands ready to interact with traders, providing

liquidity that may be hard to support organically. For more complex environ-

ments, automated market making becomes a necessity—combinatorial prediction

markets with vast numbers of outcomes to predict (e.g., a 64-team tournament

with 263 or 9.2 quintillion outcomes) are essentially unusable without some form

of automated pricing.

Internet prediction markets are just one application of automated market

making. The market makers we describe here are appropriate for use with any

assets that trade off a binary payoff structure, in which the future can be par-

titioned into a finite number of states exactly one of which will be realized. For

instance, companies like WeatherBill (weather insurance) and Bet365 (sports

betting) are beginning to use proprietary automated market makers to offer in-

stantaneous price quotes across thousands or millions of highly customizable as-

sets. These kinds of binary payout structures are also becoming more prominent

within traditional finance. For instance, the Chicago Board Options Exchange

(CBOE) now offers binary options on the S&P and Volatility indices. While

currently lightly traded relative to standard options, their integration into the

largest options exchange in the U.S. augurs well for their future. Credit default

swaps (CDS), which resemble insurance on bonds, have this kind of binary payout

structure as well, in which the underlying bond either experiences a default event

or does not. The total size of the CDS market was recently estimated at about

28 trillion dollars, making it one of the largest markets in the world (Williams

2009).

The most popular automated market maker used in Internet prediction mar-
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kets is Hanson’s logarithmic market scoring rule (LMSR), an automated market

maker with particularly desirable properties (Hanson 2003, 2007). The LMSR

is used by a number of companies including Inkling Markets, Consensus Point,

Yahoo!, Microsoft, and the large-scale non-commercial Gates Hillman Prediction

Market at Carnegie Mellon (Othman and Sandholm 2010a). (Other companies

like HSX.com and Crowdcast employ their own automated market makers.) The

LMSR is also the focus of academic studies about market microstructure (Os-

trovsky 2009, Othman and Sandholm 2010b) and laboratory studies of market

maker performance (Das 2008).

The amount of liquidity in the LMSR is a parameter set a priori before the

market maker knows what bets traders will place. Setting the liquidity is more

art than science—a constant dilemma for almost everyone who has implemented

the LMSR. For instance, in the Gates Hillman Prediction Market (Othman and

Sandholm 2010a), the amount of liquidity was set too low, which caused problems

for traders in practice in the later stages of the market. Too little liquidity makes

prices fluctuate wildly after every trade; too much makes prices barely budge even

following large bets. Exacerbating the problem, the amount prices move for a

fixed bet in the LMSR is a constant. The billionth-and-first dollar moves prices

as much as the first. This is not the way real money markets behave; heavily

traded assets like popular equities have vanishing bid/ask spreads and the ability

to enter or exit large positions without significantly impacting prevailing prices,

while lightly traded assets like boutique bond issues have enormous trading costs

associated with them.

Liquidity is good for traders but comes at the cost of increasing the market

maker’s worst-case loss. In general, an LMSR operator can expect to lose money

in proportion to the liquidity it provides (Hanson 2007, Pennock and Sami 2007).

The cost is rationalized as payment for traders’ information. But in the real

world, the vast majority of market makers run at a profit. It is no coincidence

that most examples of LMSR in practice are games based on virtual currency

rather than real money.

In this paper, we present a variant of the LMSR that is better suited for prac-

tical use in two ways. First, our market maker automatically adjusts how easily

prices change according to how much activity it sees: prices become less elastic

as more dollars flow in. The market operator need not somehow try to anticipate

traders’ level of interest to set liquidity manually. Second, our market maker can

ensure an arbitrarily small loss in the worst case and a positive profit over a
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wide range of final states. In the LMSR, prices of disjoint assets always sum to

exactly $1. In our market maker, prices can sum to greater than $1. However, we

prove that dropping the sums-to-unity property is a theoretical requirement for

any liquidity-sensitive and path-independent market maker. Moreover, relaxing

this property is precisely what allows our market maker to expect a profit, more

closely resembling the market makers we see used in practice. Furthermore, we

are able to obtain these properties while retaining an explicit, easy-to-calculate

functional form for our market maker—one of the characteristics that makes the

LMSR so popular.

Increasing market depth with increased trade may not be appropriate in every

setting. Consider a market with capital-constrained traders where the true state

of the world fluctuates frequently. In this setting a constant shallow amount of

market depth will allow traders to quickly reach the true state of the world. In

contrast, increasing market depth with transaction volume in these settings will

result in “sticky” prices that are unable to reach their correct values. However, a

fluctuating true state of the world does not necessarily pose a problem for our new

market maker; if the trading population is not capital constrained, prices could

still be changed to reflect their putatively proper values. So, for settings in which

new information does not emerge, where information is revealed gently, or where

there is substantial capital “on the sidelines” waiting for trading opportunities

to arise, our new market makers offer obviate the need to correctly select the

liquidity parameter in the LMSR.

In Section 2 we motivate the properties of automated market makers from first

principles using vector calculus. We show that no market maker can satisfy three

desirable properties: path independence, translation invariance, and liquidity

sensitivity. With this motivation, in Section 3 we introduce our market maker,

which weakens the property of translation invariance. We illustrate the features

of our market maker in detail in Section 4, including obtaining tight bounds on

the sum of prices.

2 Pricing Rules

A pricing rule calculates the prices that an automated market maker offers to

traders. In this section we derive from first principles the properties of pricing

rules from vector calculus. This study will allow us to explore the central ten-

sion behind automated market making: that no market maker can be liquidity

5

aothman
Highlight
Both reviewers brought the point that sometimes you don't want more liquidity, so I added it to the introduction.



sensitive, path independent, and translation invariant. This axiomatic charac-

terization is distinct from the work of Chen and Pennock (2007), who explore

utility-based market makers, Agrawal et al. (2009), who use convex optimization

to synthesize different strands of automated market making, Chen and Vaughan

(2010), who explore the relation between no-regret learning and automated mar-

ket makers, and Abernethy et al. (2011) who develop an axiomatic approach to

market making focusing on combinatorial markets.

2.1 Vector Calculus for Pricing Rules

We begin by partitioning the event space into n distinct exhaustive events, ex-

actly one of which will occur. The state of the market is kept by the quantity

vector q, whose i-th element determines the payout owed to traders if the i-th

event occurs. The market maker fields bets from traders, observes the event that

happens, and then settles those bets with the traders.

For instance, imagine that a market maker is taking bets on whether the

Yankees or Red Sox will win in their next baseball match. A market maker with

q = (1, 2) will pay out one dollar to traders if the Yankees win, and two dollars to

traders if the Red Sox win. In automated market makers, the marginal prices of

each event are a function of the obligations the market maker owes. For instance,

in our example the marginal price of the Yankees winning (the first event) might

be 0.4, and the marginal price of the Red Sox winning (the second event) might be

0.6. These marginal prices are the instantaneous cost of accumulating a payout

on each event. As traders place bets with the market maker, the market maker’s

q will change, which could change the marginal prices offered by the market

maker. A pricing rule translates between quantity vectors and marginal prices.

Definition 1. A pricing rule is a differentiable function p : Rn 7→ [0, 1]n that

maps a vector of quantities to a vector of prices.

Pricing rules should satisfy a further property: that they have a convex pre-

image. (However, we do not require that the pre-image of the pricing rule encom-

passes the entire domain Rn.) Convexity is a natural property. Imagine a trader

holding a portfolio q. Convexity ensures that the trader can sell any fraction of

that portfolio back to the market maker and still have defined prices. We now

define this notion formally.

Definition 2. A point in Rn is valid if it is in the pre-image of the pricing rule

p.
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Definition 3. Pricing rule p has a convex pre-image if all convex combinations

of valid vectors are also valid.

Throughout the rest of the paper, we will assume all pricing rules have a

convex pre-image.

2.1.1 Three Desirable Properties.

We can identify three desirable properties one would like a pricing rule to have:

that it be path independent, that it be translation invariant, and that it be

liquidity sensitive.

Path independence means that any way the market moves from one state to

another state yields the same payment or cost to the traders in aggregate (Hanson

2003).

Definition 4. (Path independence) Pricing rule p is path independent if the

value of line integral (cost) between any two quantity vectors depends only on

those quantity vectors, and not on the path between them.

Path independence offers three important benefits. First, it is a sufficient

condition for ensuring that there does not exist a money pump in the market:

a trader cannot place a series of trades and profit without assuming some risk.

Second, it provides a minimum representation of state: we only need to know the

quantity vector. Finally, because a trader gets the same odds from participating

all at once as in a set of small trades, traders do not need to strategize how they

make trades (e.g., making a series of small purchases instead of a single large

trade).

Path independence also follows from interpreting market makers as ways

of assessing the riskiness of a distribution of holdings. A recent stream of re-

search (Ben-Tal and Teboulle 2007, Agrawal et al. 2009, Othman and Sandholm

2011) has fleshed out the correspondence between cost-function automated mar-

ket makers and risk measures from the finance literature (Artzner et al. 1999,

Carr et al. 2001, Föllmer and Schied 2002, Carmona 2009). Risk measures are

frequently used as internal tools within financial institutions to determine the

exposure and quality of positions. In short, risk measures take as input a vector

of holdings and produce a judgement as to whether that vector is acceptable

or not. Risk measures are naturally path independent, because for internal risk

measurement purposes it does not matter how a portfolio was obtained—what

matters is what the portfolio consists of. Put another way, it does not matter if
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a contract was inherited from a legacy company, purchased at discounted price,

or is in the middle of an orderly wind-down; the company holding that contract

is still exposed to it identically. Because risk measures assess the quality of a

vector of payouts without regard to the path taken to produce that vector, they

are path independent.

Now, an important connection follows immediately from vector calculus:

Lemma 1. If a pricing rule p is path independent and has a convex pre-image,

then p is the gradient of a scalar potential field.

Tying this to convention in the prediction market literature, we call this

scalar field a cost function and denote it by C(·). The cost function maps vectors

of quantities to a single scalar value, and prices are determined by the partial

derivatives with respect to each coordinate of the vector. To move from obligation

vector x to obligation vector y, the trader pays the market maker C(y)− C(x),

where negative values indicate the market maker paying the trader. Recalling

our example of the Yankees-Red Sox baseball game, a trader that wishes to move

the market maker’s quantity vector from (1, 2) to (2, 2) (i.e., placing a bet that

pays out one dollar if the Yankees win) would pay C((2, 2)) − C((1, 2)) to the

market maker.

The cost function represents the (path independent) integral over instanta-

neous prices, so it is a measure of how much money has been paid into the system.

To view this another way, imagine that a set of traders, collectively, has d dollars

and the market is initially at state C(q0). After all the traders invest all their

money, the combined holdings of the traders can be those vectors q such that

C(q0 + q) = C(q0) + d

The second desired property is translation invariance (Agrawal et al. 2009):

that the cost of buying a guaranteed payout of x always costs x. Translation

invariance has been a standard feature of market makers in the academic liter-

ature (Hanson 2003, 2007, Pennock and Sami 2007, Agrawal et al. 2009, Chen

and Vaughan 2010).

Definition 5. (Translation invariance) A pricing rule is translation invariant

if prices always sum to unity. Formally:∑
i

pi(q) = 1

for all valid q.
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Most markets in practical use do not preserve translation invariance, and with

good reason: a translation invariant pricing rule ensures that the market maker

will take a loss as long as the final market prices are more accurate than the

initial market prices, a condition that is essentially tautological (if it were false,

there would be little reason to run a market in the first place). The simplest

way to see this is to characterize the way market makers function in standard,

familiar markets. A market maker takes on a risk when setting prices: if the

prices are not the actual expected final prices, the market maker has a negative

expectation. Market makers counter this risk by charging different prices on both

market sides (buying and selling) so that buying a guaranteed payoff of one dollar

costs more than a dollar. Then, the market maker profits from traders purchasing

on both sides of the market, leaving a cut (aka the “spread” or “vig”) for the

market maker. A translation invariant rule shrinks the size of the spread to zero,

leaving the market maker exposed to the negative downside risk of offering prices

without any upside.

Conversely, the translation invariance condition guarantees that no trader

can arbitrage (exploit without risk) the market maker by taking on a guaranteed

payout for less than the payout.

The most direct benefit of a translation invariant pricing rule is that it pre-

serves the equality between the price of an event and the probability of that

event occurring. Both prices and probabilities will be non-negative and (when

exhaustively partitioned) will sum to one.

Translation invariant rules also guarantee the “law of one price”, so that if

two bets offer the same payouts in all states, they will have the same price. Put

another way, recall our Yankee-Red Sox baseball game example. The law of

one price asserts that placing a bet of a certain amount towards the Yankees

winning will be priced the same as placing a bet of the same amount on the Red

Sox losing. While logically straightforward, this condition does not necessarily

hold in practice in traditional continuous double auctions, as the administrators

of the Iowa Electronic Markets have discussed (Berg et al. 2001, Oliven and

Rietz 2004). This condition can thus also be viewed as a necessary condition

for efficient information aggregation in a market. If the law of one price is not

satisfied, there are opportunities for unsophisticated traders to pay too much or

get paid too little.

As the third desired property, we would like market makers to adjust the

elasticity of their pricing response based on the volume of activity in the market.
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We call market makers that are unable to adjust in this way liquidity insensitive.

Definition 6. (Liquidity sensitivity) Define the n-dimensional vector 1 ≡
(1, 1, . . . , 1). A pricing rule is liquidity insensitive if

pi(q + α1) = pi(q)

for all valid q and all α.

Sensitivity to liquidity is desirable because it aligns intuitively with the way

one would want markets to function: a fixed-size investment moves prices less in

thick (liquid) markets than in thin (illiquid) markets.

One can also think about sensitivity from a Bayesian perspective. The 1000th

flip of a coin moves the posterior estimate of that coin’s probability of coming up

heads much less than the first flip. This is because, after 1000 flips, we already

have a great deal of information about the probability of the coin coming up

heads. Similarly, if we have a lot of information about the objective price of

a contract (a deep market), small bets in the market should not impact prices

much.

2.1.2 Tension among the Desired Properties.

In this section we show that no market maker can satisfy all three of the desired

properties.

Definition 7. Any market maker that satisfies translation invariance and path

independence is a Hanson market maker.

This name is inspired by Robin Hanson, who provided an approach to building

such market makers from strictly proper scoring rules. All of the example market

makers given by Hanson and subsequent authors (Peters et al. 2007, Pennock and

Sami 2007, Chen and Pennock 2007, Agrawal et al. 2009, Chen and Vaughan

2010, Chen and Pennock 2010) are liquidity insensitive. We now show why:

liquidity sensitivity is in fact impossible to achieve in the Hanson context.

Theorem 1. No pricing rule is translation invariant, path independent, and

liquidity sensitive.

Proof. We show that a Hanson market maker, which is by definition translation

invariant and path independent, has constant prices along 1 and is therefore

liquidity insensitive.
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Because Hanson market makers are path independent, prices are given by the

gradient of a scalar field, the cost function. Consider the Hessian of that cost

function

∇2C(·) =


∂p1
∂q1

· · · ∂pn
∂q1

...
. . .

∂p1
∂qn

· · · ∂pn
∂qn


The sum of the entries of the i-th row of this matrix represents the change

in the sum of prices from adjusting qi. Since prices always sum to 1, each row of

the matrix sums to 0.

By the symmetry of second derivatives, the columns of the Hessian are iden-

tical to the rows of the Hessian. Therefore, each column of the Hessian also sums

to 0. So we have ∑
j

∂pj
∂qi

= 0 =
∑
i

∂pj
∂qi

= 1 · ∇pj = ∇1pj

where ∇1 represents the directional derivative along 1. Since the directional

derivatives of the prices along 1 are all 0, the prices are constant along 1, and so

Hanson market makers are liquidity insensitive. �

3 Introducing Our Market Maker

As we have discussed, a Hanson rule satisfies translation invariance and path

independence; it is not sensitive to liquidity and it will not make money in

expectation. In this section, we introduce our market maker, which is path

independent, adaptive to increased liquidity, and can arrive at situations in which

it makes money regardless of realized outcome. We delve into the theoretical

properties of our market maker in detail in Section 4.

We begin this section by considering two ways of modifying a Hanson rule

in an effort to make it more practical. Though we dismiss both approaches,

their rejection helps us frame the properties of the market maker we do end up

constructing.

3.1 Imposing a Transaction Cost and Subsidizing Liq-

uidity

One approach to make Hanson rules more practical is to directly impose a trans-

action cost on each trade. That is, bets are calculated from the Hanson rule,
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but an additional charge (e.g., 3%) is added to every transaction presented to

a potential bettor. For instance, if we present a trader with a bet that would

normally cost 1 dollar according to the Hanson rule, it would instead cost 1.03.

The market maker can then keep 0.03.

Imposing a transaction cost enables a market maker to potentially run at a

profit, assuming a sufficient level of market activity. However, this scheme is still

not liquidity sensitive—prices respond identically to bets at all different volumes.

A second and more complex idea is to break the transaction fee between in-

creasing liquidity and collecting a fee. To our knowledge, this idea was originally

proposed by Todd Proebsting. For instance, a market maker can charge a 3%

fee, but only keep 1%, putting the other 2% towards increasing liquidity (perhaps

by increasing the amount of liquidity so that the worst-case loss is larger by the

amount of the 2% subsidy). Such a market maker would be liquidity sensitive

and can run at a profit, but has two shortcomings.

The first shortcoming is that increasing liquidity in this manner has a ten-

dency to distort prices towards 1/n. Recall that liquidity is a measure of how

much the market maker adjusts marginal prices in response to market activity.

At higher levels of liquidity it takes larger magnitude quantity vectors to produce

the same prices. Therefore, increasing liquidity in the LMSR has the effect of

dampening extreme prices by pushing prices closer together. Another way of

vieweing this effect is to consider the equivalence between (convex) Hanson mar-

ket makers and regularized online follow-the-leader algorithms explored in Chen

and Vaughan (2010). As those authors show, the concept of liquidity in auto-

mated market makers is analogous to the amount of regularization applied to

prices—that is, with more liquidity, prices are closer to an initial prior, which

is generally a uniform estimate of 1/n over each state (this is the case for the

LMSR). It is of particular concern that agents, knowing this effect, could spec-

ulatively trade with an eye towards it occurring. For example, a speculator can

bet on low-probability events with the understanding that future trade in the

market will increase liquidity, and therefore increase the value of these bets as

their prices move toward the mean.

The second shortcoming is that it breaks path independence, because a series

of smaller orders will result in more updates to the liquidity parameter (e.g., the

b term in the LMSR) than a single large order.

Our market maker can be thought of as a way of adapting this scheme con-

tinuously with order volume, so that prices are not distorted and so that path
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independence is maintained.

3.2 Relaxing Translation Invariance

Since we cannot satisfy all three of our desiderata (path independence, translation

invariance, and liquidity sensitivity) simultaneously, we should consider which of

them to relax. As we have discussed, Hanson market makers relax liquidity

sensitivity. A more reasonable desideratum to relax is translation invariance,

because it does not match how we would expect a market to function in the

real world. In particular, one would like a market maker to be able to derive

a profit from transacting with traders. So rather than enforcing the translation

invariance condition ∑
i

pi(q) = 1

for all valid q, we would actually prefer∑
i

pi(q) ≥ 1

That way, if traders cannot take on negative quantities, the prices they face

always sum to at least one.

3.3 Moving Forward in Obligation Space

Of course, with a path independent market maker, if it costs more than one

dollar to acquire a dollar guaranteed payout, a trader could arbitrage the market

maker by selling dollar guaranteed payouts to the market maker for more than

a dollar.

One way to get around this problem is to only allow the obligation space to

move forward. In this section we present two closely related ways to accomplish

this goal.

3.3.1 No Selling

In this scheme, traders always purchase shares on outcomes from the market

maker. Formally, let the market be at state q0, and let a trader attempt to

impose an obligation q on the market maker, where

min
i
qi < 0.
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Let

q̄ ≡ −min
i
qi

Under the usual cost function scheme, that trader would pay

C(q0 + q)− C(q0)

but instead, in an always moving forward scheme, the trader pays

C(q0 + q + q̄1)− q̄ − C(q0)

and the market maker moves to the new state

q0 + q + q̄1

noting that the vector q + q̄1 consists of all non-negative components. This is

what we mean by the market maker always moving forward in obligation space.

This scheme is still fully expressive, because with an exhaustive partition over

future events the logical condition of betting against an event is equivalent to

the logical condition of betting for its complement. Essentially, traders can take

on the same obligations as in a traditional scheme, only they will cost more.

Furthermore, if ∑
i

pi(q) > 1

then with this scheme when a trader imposes an obligation and then sells it back

to the market maker, the trader ends up with a net loss—just like the markets

we see in the real world.

3.3.2 Covered Short Selling

In this scheme, traders are allowed to sell back to the market maker contracts

that they have previously purchased, but are not allowed to directly sell contracts

to the market maker.

Let qt represent the vector of payoffs held by trader t, so that qti represents

the amount the market maker must pay out to trader t if the i-th event occurs. In

a covered short selling scheme, the cost function operates as usual unless trader

t suggests a trade that would result in

min
i
qti < 0

14



Then, similar to the no selling scheme discussed above, the trader’s payoff

vector is translated by t̄ ≡ −mini q
t
i , so that instead the trader acquires the

vector

qt + t̄1

noting that for all events i,

(qt + t̄1)i ≥ 0

The operation of selling any contract previously purchased from the market

maker does not result in a trader holding a negative payoff on any event. Conse-

quently, in this scheme traders can buy and then immediately sell back contracts

from the market maker at no net cost.

3.3.3 Discussion

Even though both schemes use the same cost function, they will produce distinct

market makers when used with the cost functions we develop later in this section.

A market maker that allows covered short selling permits a trader to buy and

then immediately sell at no net cost. With a no selling scheme, a trader that

buys and then immediately sells will incur a small loss. Which scheme is better

depends on the setting; if the set of traders is sophisticated and profitability

is a concern, then the no selling scheme is a better choice because it weakly

dominates in terms of revenue for the same set of trades. However, if some

traders are unsophisticated and user experience is a concern, then the covered

short selling scheme could be a better choice because it will not punish users for

mistaken bets that they quickly cancel.

In contrast, Hanson market makers operating with either scheme (or with

no scheme at all) produce exactly the same quoted costs. Let H be a Hanson

market maker. Then because H is translation invariant

H(q0 + q + q̄1)− q̄ = H(q0 + q + q̄1− q̄1) = H(q0 + q)

3.4 The Logarithmic Market Scoring Rule (LMSR)

Our pricing rule is derived from the logarithmic market scoring rule (LMSR) (Han-

son 2003). The LMSR uses the cost function

C(q) = b log

(∑
i

exp(qi/b)

)
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where b > 0 is the constant liquidity parameter. This function’s pre-image is the

entire space Rn. The function’s gradient, the pricing rule, is

pi(q) =
exp(qi/b)∑
j exp(qj/b)

This cost function has worst-case loss b log n for the market maker. (This loss is

achieved by starting from identical prices on all events.)

3.5 Defining our Market Maker

The conventional LMSR cost function can be written as

C(q) = b(q) log

(∑
i

exp(qi/b(q))

)
where b(q) = b is an exogenously set constant. Instead, our market maker uses

the LMSR cost function, but with a variable b(q) that increases with market

volume as follows:

b(q) = α
∑
i

qi

where α > 0 is a constant. The valid region for our market maker is the set of n-

dimensional vectors with all non-negative components (i.e., the positive orthant),

omitting the origin. In order to stay in this region we always move forward in

obligation space, as described in Section 3.3.

While it is straightforward that our market maker is path independent (be-

cause it has a cost function), it remains to be shown that it is liquidity sensitive,

or in a larger sense, has any desirable qualities at all. In the next section, we

explore the properties of our market maker in depth.

4 Properties of our Market Maker

Even though our modification to the LMSR is simple, it results in a cascade of

intriguing properties.

4.1 Prices

In a path-independent market maker, the price of state i is given by the partial

derivative of the cost function along i. With constant b, this expression is simply

pi(q) =
exp(qi/b)∑
j exp(qj/b)
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When b(q) = α
∑

i qi, however, the expression becomes more complex, but still

analytically expressible:

pi(q) = α log

∑
j

exp(qj/b(q))

+

∑
j qj exp(qi/b(q))−

∑
j qj exp(qj/b(q))∑

j qj
∑

j exp(qj/b(q))
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Figure 1: In a 2-event market with α = .05, this plot illustrates the relationship

between qx and px for qy = 250, 500, and 750, respectively. The liquidity sensitivity of

our market maker is evident in the decreasing slope of the price response for increasing

qy.

Figure 1 illustrates the liquidity sensitivity of these prices in a 2-event market.

As the number of shares of the complementary event increases, the market’s price

response for a fixed-size investment becomes less pronounced.

Figures 2 and 3 show the price of a one-unit bet at various levels of liquidity

in a two-event market. Figure 2 shows the price of a one-unit bet when the two

events have equal quantities outstanding, while Figure 3 has the first event with

proportionately higher quantities outstanding. Thus, the unit bet is more expen-

sive in the former than the latter. Though the two figures differ quantitatively,
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Figure 2: In a 2-event market with α = .05, this plot illustrates the cost of a unit bet

on the first outcome when both outcomes have the designated outstanding quantity.

they agree qualitatively: the price of a fixed-size contract shrinks as the level of

outstanding quantities increase.

Figures 2 and 3 also illustrate an important distinction in our market maker

between instantaneous prices and cumulative prices. Even though, as we show

in the next section, the sum of instantaneous prices (i.e., the marginal price for a

vanishingly small quantity) is bounded quite modestly for all possible outstanding

quantities, at low levels of liquidity these instantaneous prices increase quite

quickly. Thus at very small outstanding quantities the cost of a unit bet is more

than 90 cents, because our market maker is very sensitive to bets of large size

relative to the quantities outstanding. At higher levels of outstanding quantities,

an additional unit bet is relatively small and cumulative prices do not increase

much past instantaneous prices.
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Figure 3: In a 2-event market with α = .05, this plot illustrates the cost of a unit bet on

the first outcome when the first outcome has ten percent greater quantity outstanding

than the second outcome, where the second outcome’s quantity is listed (i.e., a value

of 10 corresponds to (11, 10)).

4.2 Tight Bounds on the Sum of Prices

In this section, we establish tight bounds on the sum of prices. In particular, we

show that

1 ≈ 1+n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
≤
∑
i

pi(q) ≤ 1+αn log n

and therefore our market maker achieves the desirable liquidity-sensitivity prop-

erties we discussed in Section 3.2.

Prices achieve their upper bound only when q = k1 for k > 0. Recall that 1

is the vector where each element is a 1, so the product k1 yields a vector where

each element is a k. Prices achieve the lower bound as qi →∞.

Proposition 1. Prices at k1, for all k > 0, sum to 1 + αn log n.

Proof. For q = k1, we have qi = qj for all i and j, which allows us to simplify
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considerably.

∑
i

pi(k1) =
∑
i

α log

∑
j

exp(qj/b(q))


= nα log

∑
j

exp(qj/b(q))


= nα log

(
n exp

(
1

αn

))
= nα log

(
exp

(
1

αn

))
+ nα log n

= 1 + αn log n

�

Proposition 2. The maximum of the sum of prices is obtained at every point

of the form k1, where k > 0. Furthermore, these are the only points that achieve

the maximum.

Proof. Consider the set of all quantity vectors that sum to b > 0. We will show

that the quantity vector where each event has equal quantity (each one having

b/n) maximizes the sum of prices.

The sum of prices at quantity vector q is given by∑
i

pi(q)

Without loss of generality, take
∑

i qi = 1/α, so that the space of vectors we

consider are those for which b(q) = 1.

So without loss of generality we can rewrite the sum of prices as

1 + nα

log

∑
j

exp(qj)

− ∑j qj exp(qj)∑
j exp(qj)


We will show that

log

∑
j

exp(qj)

− ∑j qj exp(qj)∑
j exp(qj)

≤ log n,

with equality occurring only when q = k1. We can rewrite the above expression

as ∑
j

qj exp(qj) ≥

∑
j

exp(qj)

 log

(∑
j exp(qj)

n

)
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Take pj ≡ exp(qj). The expression then becomes

∑
j

pj log(pj) ≥
∑
j

pj log

(∑
j pj

n

)
Without loss of generality, we can scale the pj to define a probability distri-

bution, to get

∑
j

pj log(pj) ≥ log

(∑
j pj

n

)
≥ − log(n)

This is a result from basic information theory, which establishes that the uni-

form distribution has maximum entropy over all possible probability distribu-

tions (Cover and Thomas 2006). Therefore, equality holds only in the case of

a uniform distribution, which corresponds to the quantity vector having equal

components (q = k1). �

Proposition 3. At any valid q,
∑

i pi(q) ≥ 1.

Proof. Define

ri ≡
qi
b(q)

and

si ≡
exp(ri)∑
j exp(rj)

Observe that the si form a probability distribution. Then using the entropy

operator H:

H(x) = −
∑
i

xi log xi

we can express prices as

pi(q) = si + αH(s)

and therefore the sum of prices as∑
i

pi(q) = 1 + αnH(s) ≥ 1.

Because the entropy operator is bounded below by zero, the sum of prices is at

least 1. �

There are two ways to produce a zero entropy distribution of the si in the

above result.
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• Were our market maker defined over all of Rn, we could produce a zero

entropy distribution by sending qi →∞ and qj → −∞ for i 6= j. However,

our market maker is not defined over all of Rn, but rather only in the

positive orthant.

• As α ↓ 0, the entropy of the distribution of the si can approach 0. Letting

qi be positive and qj = 0 for j 6= i, we have

ri = 1/α and rj = 0

and therefore

si =
exp(1/α)

exp(1/α) + n− 1
sj =

1

exp(1/α) + n− 1

a distribution which, for fixed n, approaches a unit mass on si as α ↓ 0.

Consequently, for fixed positive α, the distribution of the si can have nearly

zero entropy, but cannot achieve absolutely zero entropy. Thus the minimum

sum of prices is not unity but rather very close to it, equal to unity to first order

and well within machine precision for small values of α. The following proof

formalizes this.

Proposition 4. The minimum sum of prices is

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
.

This minimum is achieved when qi > 0 and qj = 0 for i 6= j. For small

α & 0,

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
= 1 +O

(
α2
)
.

Proof. From our result above, the minimum sum of prices is achieved when the

distribution of the si has minimum entropy. When restricted to the positive

orthant, the corresponding distribution with largest entropy sets one qi to be

positive and the other qj = 0 where j 6= i.

At these values, we have

pi(q) = α log(exp(1/α) + n− 1)

and

pj(q) = α log(exp(1/α) + n− 1) +
1− exp(1/α)

exp(1/α) + n− 1

22



Observe that pi ≈ 1 and pj ≈ 0.

Adding these terms together and simplifying we get that the sum of prices is

1 + n

[
α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1

]
.

Within the braces, the left term is larger than unity while the right term is

smaller than unity, meaning that the sum of prices as a whole is greater than

unity, which is to be expected from our previous result.

As we will discuss, it is natural for α to be set very small. Let

f(α) = α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1
.

Then the Taylor series of the sum of prices on the axes, taken around α = 0, is

given by ∑
i

pi = 1 + f(0) + αf ′(0) +O
(
α2
)

Since

lim
α↓0

α log(exp(1/α) + n− 1)− exp(1/α)

exp(1/α) + n− 1
= 1− 1 = 0

the f(0) term of the expression is zero, meaning that the total deviation away

from 1 for small α is given by the term αf ′(0). The derivative is a complex

expression that we give for completeness:

f ′(α) = n

(
e1/α

α2(n+ e1/α − 1)
− e2/α

α2(n+ e1/α − 1)2
− e1/α

α(n+ e1/α − 1)
+ log

(
n+ e1/α − 1

))

By taking the limit of this expression, we see that

lim
α↓0

f ′(α) = 0

Thus for small α the sum of prices is bounded below by

1 +O
(
α2
)

Put another way, to first order the lower bound of the sum of prices of our market

maker is 1. �

Figure 4 is a plot of the sum of prices in a simple two-quantity market. Prices

achieve their highest sum when qx = qy and are bounded below by 1.
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Figure 4: Sum of prices where n = 2 and α = 0.05. The sum is bounded between 1

and 1 + αn log n ≈ 1.07, achieving its maximum where qx = qy.

4.3 Selecting α

A possible complaint about our scheme is that we have replaced one a priori

fixed value, b, of the LMSR with another a priori fixed value, our α. In this

section, we discuss how the α parameter has a natural interpretation that makes

its selection relatively straightforward.

The α parameter can be thought of as the commission taken by the market

maker. Higher values of α correspond to larger commissions, which leads to more

revenue. At the same time, setting α too large discourages trade.

As we have shown, the sum of prices with our market maker is bounded by

1 + αn log n, and this value is achieved only when all quantities are equal. This

bound provides a guide to help set α.

How large should administrators set α within our market maker? We can

look to existing market makers (and bookies) for an answer. Market makers

generally operate with a commission of somewhere between 2 and 20 percent.

To emulate a commission that does not exceed v in our market maker, one can

simply set

α =
v

n log n
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So, the larger the event space (larger n), the smaller α should be set to maintain

a given percentage commission.

Though the sum of prices increases in α, this provides no guidance as to the

behavior of the cost function itself—it is not immediate that the cost function

increases in α, because it has conflicting effects within our cost function. Increas-

ing α decreases the terms qi/b(q) in the cost function, but scales up the output

of the log function. However, the following proposition establishes that our cost

function is non-decreasing in α. We are assisted in this result by the following

lemma.

Lemma 2. For our cost function

C(q) ≥ max
i
qi

Proof. Suppose there exists a valid q such that

C(q) < max
i
qi

without loss of generality, let

q1 = max
i
qi

and define

ri =
qi
b(q)

≥ 0

then we have

log

(∑
i

exp(ri)

)
< r1∑

i

exp(ri) < exp(r1)∑
i 6=1

exp(ri) < 0

which is a contradiction because exp(x) is non-negative for all x. �

Proposition 5. Our cost function is non-decreasing in α.

Proof. This result follows if we can show

∂

∂α
C(q) ≥ 0
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After taking the partial derivative of our cost function and simplifying, we get(∑
i

exp(qi/b(q))

)
C(q) ≥

∑
i

qi exp(qi/b(q))

From Lemma 2 we have

C(q) ≥ max
i
qi

and so(∑
i

exp(qi/b(q))

)
C(q) ≥

(∑
i

exp(qi/b(q))

)(
max
i
qi

)
≥
∑
i

qi exp(qi/b(q))

which completes the proof. �

Recalling that the cost function defines the amount paid into the market

maker, an informal way to interpret this result is that the market maker’s rev-

enue increases with the α parameter for any given quantity vector. Of course,

increasing α results in higher prices, which can affect trader behavior, so the

overall effect in practice might be ambiguous.

4.4 Bounded Loss

Like the LMSR, our market maker has bounded loss. In this section, we first

explore why having some possible loss is actually desirable for a market maker,

and then prove that our market maker has finite, arbitrarily small loss.

When pricing an obligation, a market maker could price it at least as high as

the payout a trader would receive in every state of the world. But then it would

not be rational for any trader to accept these offered bets. For it to be rational

for a trader to accept a bet with the market maker, the bets the market maker

offers must therefore (at least sometimes and possibly always) expose the market

maker to a worst-case loss.

On the other hand, it is highly undesirable for a market maker to lose an

infinite amount in some cases—particularly if we are using real money.

Definition 8. The loss of a market maker that starts in state q0 and ends in

state q, with the realization of event i, is

C(q0)− C(q) + qi

Recall that here C(·) is the cost function and qi is the amount the market maker

has to pay out in the end upon event i occurring.
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Definition 9. A pricing rule has bounded loss if for all initial states q0 and all

states q,

C(q0)− C(q) + max
i
qi <∞

Proposition 6. Our pricing rule has bounded loss. Specifically, its loss is

bounded by C(q0).

Proof. By Lemma 2

C(q) ≥ max
i
qi

and so

max
i
qi − C(q) ≤ 0

⇒ C(q0) + max
i
qi − C(q) ≤ C(q0)

so our market maker’s loss is bounded by

C(q0)

�

Since

lim
q→0

C(q) = 0,

setting the initial market quantities close to 0, the worst-case loss becomes arbi-

trarily small. But reducing the initial vector too much comes at a cost, however,

because

lim
q→0

b(q) = 0

so the market becomes arbitrarily sensitive to small bets in its initial stage.

In contrast, to get near-zero loss in the LMSR, one would have to set b near

zero, which would cause arbitrary sensitivity to small bets throughout the dura-

tion of the market. Since other Hanson market makers are not liquidity sensitive

either, they suffer from the same problem. In our market maker, by setting the

initial quantities close to zero, we achieve near-zero loss while containing the high

sensitivity to the initial stage only.

4.5 Worst-Case Revenue

In addition to always having bounded loss (and near-zero loss if desired), under

broad conditions on the final quantity vector of the market, we can guarantee
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Figure 5: The shaded regions show where the market maker has outcome-independent

profit in a two-outcome market with initial quantity vector (1, 1) and various values of

α. Figure (a) sets α equal to .01, Figure (b) equal to .03, and Figure (c) equal to .06.

The top black ray represents py = .95 and the bottom black ray represents px = .95.
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Figure 6: The shaded regions show where the market maker has outcome-independent

profit in a two-outcome market with α = .03 and various initial quantity vectors.

Figure (a) sets q0 equal to (.5, .5), Figure (b) equal to (1, 1), and Figure (c) equal

to (2, 2). The top black ray represents py = .95 and the bottom black ray represents

px = .95.

that our market maker actually makes a profit (regardless of which event gets

realized). The worst-case revenue is

R(q) ≡ C(q)−max
i
qi − C(q0)
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If R(q) > 0 when the market closes, the market maker will book a profit regard-

less of the outcome that is realized. We say that in such states the market maker

has outcome-independent profit. Figures 5 and 6 show the set of market states

for which R(q) > 0 for various values of α and initial quantity vectors q0.

Figure 5 shows varying values of α. From Theorem 5, the cost function is non-

decreasing in α, which is reflected by the increasing areas of outcome-independent

profit as α gets larger. Figure 6 shows varying initial quantity vectors. Since

revenue is trivially decreasing in the cost of the initial quantity vector, as the cost

of our initial quantity vector increases, the area of outcome-independent profit

shrinks.

From the figures, it might appear that large portions of the state space will

result in our market maker losing money. However, prices and quantities have

a highly non-linear relationship: prices quickly approach 1 as quantities become

imbalanced. The straight black rays on the plane represent a price of .95 for

one of the two events. Therefore, the plots indicate that as long as markets are

terminated while events have reasonable levels of uncertainty (i.e., where the

price of one event is not asymptotically close to unity), the market maker can

book a profit regardless of the realized future.

Figure 7 contrasts the revenue of our market maker against the LMSR. In

particular, the figure shows the revenue surplus of the LMSR relative to our

market maker. Positive values represent how much more our market maker would

collect if the market terminates in the each obligation state. The comparison

between the two market makers is valid because both the market makers have

the same bound on worst-case loss, set by aligning the α and q0 parameters in

our market maker with the b parameter in the LMSR. What is especially notable

is how large the revenue difference between the two market makers becomes

for lopsided obligation vectors, when the market maker has to pay out much

more if one event happens than if the other event happens. As Figures 5 and 6

showed, generally at lopsided obligation vectors our market maker does not book

an outcome-indepedent profit. However, as Figure 7 shows, our market maker

delivers significantly less loss than the LMSR for lopsided obligation vectors.

4.6 Homogeneity

Recall that a positive homogeneous function f of degree k has

f(γx) = γkf(x)
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Figure 7: A plot of the revenue surplus between the our market maker and the LMSR.

The z-axis is how much more our market maker makes than the LMSR. The parameters

are aligned so that the two market markers have the same worst-case loss (∼ 104.2),

reflected by the zero revenue surplus at q0. In our market maker, α = .03 and q0 =

(100, 100), and in the LMSR, b = 150.27.

for γ > 0. “Positive homogeneous functions of degree one” are often referred to

as just “positive homogeneous”. As it turns out, the cost function of our market

maker is positive homogeneous, and in this section we prove and explore the

implications of that result.

Proposition 7. Our cost function is positive homogeneous of degree one.

Proof. Let γ > 0 be a scalar and q be some valid quantity vector. Without loss

of generality, we can assume
∑

i qi = 1. Then

C(γq) = b(γq) log

(∑
i

exp(γqi/b(γq))

)

= γα log

(∑
i

exp

(
γqi
γα

))
= γC(q)

�
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It is crucial that the cost function be positive homogeneous, because that al-

lows the price response to scale appropriately in response to increased quantities.

One of the primary concerns about using the LMSR is the relation of the fraction

of wealth invested in the market to the displayed prices. If the b parameter is

set too low in the LMSR, that is, if the market is thick but the market maker’s

price response is too sensitive, then tiny fractions of the overall wealth in the

market can move prices a great deal. On the other hand, if the b parameter is

set too high all the wealth in the market would be insufficient to move prices

significantly enough to reflect this skewed distribution of bets.

A market maker would ideally provide a price response proportional to the

amount of wealth in the market. Such a market maker would appropriately

scale liquidity, requiring progressively larger trades to achieve the same price

response as the market accumulated more and more money. Scaling price re-

sponses proportional to the state of the market is the correct liquidity-sensitive

behavior because it yields a relative price response that is the same regardless

of whether the amount of money in the market is tens, thousands, or millions

of dollars. Another way of thinking about this property is that a proportional-

scaling market maker is currency independent: without any further adjustment

it will function equally as well regardless of whether trading is done in millions

of yen or fractions of a dollar, because only the relative, rather than absolute,

amounts wagered affect the market maker’s price response. This leads us to the

following definition.

Definition 10. Prices scale proportionately if

pi(q) = pi(γq)

for all i, q and scalar γ > 0.

In fact, only homogeneous cost functions provide this price response.

Proposition 8. Prices scale proportionately if and only if the cost function is

positive homogeneous of degree one.

Proof. Proportional scaling is equivalent to the price functions being positive

homogeneous of degree zero. Since the k-th derivative of a positive homogeneous

function of degree d is itself a positive a positive homogeneous function of degree

d− k, if and only if the cost function is positive homogeneous of degree one will

prices scale proportionately. �
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5 Discussion

Two of the main practical hurdles to more widespread use of Hanson’s LMSR

market maker are (1) the liquidity level b is set manually and never changes,

and (2) the operator can expect to lose money in proportion to b. We presented

a new automated market maker design that overcomes both of these hurdles

while retaining path independence, thus ensuring the market maker cannot be

exploited and greatly simplifying the implementation. We proved that if we

want sensitivity to liquidity and path independence, then we must relax the

translation invariance condition that constrains prices of disjoint and exhaustive

assets to sum to exactly one dollar. In our case, prices can sum to more than

one, but this turned out to be a practical benefit, enabling the market maker to

extract a profit if the entropy of final prices is sufficiently high. With the LMSR,

the market operator must ante a larger subsidy to obtain reasonable liquidity.

With our liquidity-sensitive market maker, the subsidy can be set arbitrarily low

without harming liquidity (except in the initial stage). We also show that for

a broad range of terminal market states, our market maker actually makes a

profit regardless of the event that gets realized. Perhaps most importantly in

practice, our market maker is able to achieve all these properties with a simple

and explicit closed form. Simplicity of representation has been one of the largest

factors driving the widespread adoption of the LMSR.

While we have shown that our market maker has a broad range of new and

appealing properties, they come at the consequence of forfeiting the translation

invariance of the LMSR. We proved that this was necessary: no cost function-

based market maker can be both liquidity sensitive and translation invariant. As

a practical matter, though, losing translation invariance means losing the direct

correspondence between prices and probabilities that the LMSR enjoys. Instead,

what we are left with is a range of possible probability estimates consistent with

the prices from our market maker. For instance, when q = k1, any probability

between 1/n− α(n− 1) log n and 1/n+ α log n for each event is consistent with

the market maker’s prices. Put another way, a myopic trader that had beliefs

in this range would not trade with the market maker. The space of consistent

probability estimates increases as the sum of prices increases; for the small α

that is natural to our setting the range of prices is relatively small and dividing

the price of each event by the sum of prices provides a simple, coherent way of

normalizing prices into probabilities.

If the market administrator is omniscient and can precisely set the correct
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amount of liquidity in the LMSR, then the translation invariance of the LMSR,

and the price-probability duality it implies, is an argument for selecting the

LMSR over the market maker we have described. However, if the market ad-

ministrator is not omniscient and would incorrectly guess the optimal level of

liquidity within the market, then the market maker we have described here is

able to set the correct level of liquidity endogenously, while the LMSR would be

stuck with a bad liquidity level. This makes our market maker a better choice for

domains where the volume of active trading is unknown in advance—a feature

of many markets, and of many Internet prediction markets in particular.

There are several unsettled issues with our market maker, including how to

incorporate prior information or learning into the way the market maker prices

contracts. One possible direction is suggested by the approach of Das (2008)

and Das and Magdon-Ismail (2009), which feature a heuristic market maker.

However, that line of research uses flexible market makers that focus more on

average-case performance with non-adversarial traders. It is difficult to see how

to reconcile our market maker, that provides strong bounds on quantities like

worst-case loss and sums of prices, into a heuristic framework. Another direction

is taken by Chen et al. (2008) and Chen and Vaughan (2010), which explore the

link between Hanson market makers and no-regret learning algorithms. However,

as we showed here, it is necessary to break the duality of prices and probabilities

in order to achieve liquidity sensitivity. Consequently, it is not immediately clear

how the no-regret framework aligns with the approach of this paper.

Additionally, our market maker operates in an online setting where traders

either accept or reject bets but do not have the option of setting persistent limit

orders (e.g., “I want the payoff vector x at a price not greater than p”) that may

be filled in the future. In our setting, the market maker is explicitly tasked with

taking on surplus quantity, and therefore risking loss, which can be contrasted

with recent work on limit order matching (Blum et al. 2006, Bredin et al. 2007).

Incorporating limit orders into the market maker is tricky because persistent

orders can induce discontinuities and strange effects in the market maker’s price

response as new orders cause existing limit orders to be executed. Agrawal et al.

(2009) present a solution to this problem using a convex optimization technique

to augment a market maker with the ability to handle persistent limit orders;

since our market maker is also convex, it could be augmented in a similar fashion.

However, we cannot implement the solution of Agrawal et al. (2009) directly

because the framework explored in that paper relies on simplifications based
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on translation invariance that our market maker does not satisfy. It would be

interesting to explore how to handle these persistent limit orders with our market

maker, and how to mix sequential and batch order processing.

Finally, our new market maker is just one instance of the class of liquidity-

sensitive market makers. Other liquidity-sensitive market makers can be devel-

oped that have different relations to worst-case loss, profit, and liquidity. For

instance, it might be natural to have a liquidity-sensitive market that expands

liquidity only up to a certain point, after which it reaches a state of terminal

liquidity and is no longer sensitive to increased transaction volume. Large-cap

equities intuitively seem to have reached this terminal state; a purchase of shares

of IBM today and a purchase of shares of IBM a month from now are likely to face

equivalent market depth, even though billions of dollars will have transacted in

the interim. We anticipate the introduction of many different liquidity-sensitive

market makers, guided by our result that, in order to have liquidity sensitivity,

a market maker must break the duality between prices and probabilities.
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