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We consider two different scenarios in prediction markets where an agent cannot simply move the market
price to his current belief. The first one is when the agent has a budget constraint which restricts the trades
he could make. Extending recent work of [Fortnow and Sami/2012] on this problem, we give a rich geometric
characterization of agent behavior in such cases. We show that the agent moves the price to the Bregman
projection of his belief onto the budget set, the set of prices his budget constraint allows him to move to.
Further we show that for the case of complete markets, an agent with budget B is equivalent two agents
with budgets B/2 trading one after the other. In other words a sequence of agents with the same belief is
equivalent to a single agent with the same belief and with budget equal to the sum of the budgets of all
the agents. This is an indication that prediction markets can still aggregate information when agents have
budget constraints if there are many agents with the same belief.

The second scenario we consider is when an agent only has limited information, in the sense that he only
knows that the probability distribution belongs to a certain (convex) set. The optimal trade for the agent is
the one that maximizes the worst case profit where the profit is taken over all distributions in his belief set.
In this case we once again give a geometric characterization of the final price as a Bregman projection of the
current price onto the belief set. We also relate this model to other models in the literature.

1. INTRODUCTION

A prediction market is a central clearinghouse for people with differing opinions about
the likelihood of an event—say Barack Obama to win the U.S. Presidential election—to
trade monetary stakes in the outcome with one another. At equilibrium, the price to
buy a contract paying $1 if Obama wins reflects a consensus of sorts on the probability
of the event. At that price, and given the wagers already placed, no agent is willing
to push the price further up or down. Prediction markets have a good track record of
forecast accuracy in many domains [Goel et al. [2010; [Wolfers and Zitzewitz Wolfers
and Zitzewitz].

When agents are constrained in how much they can trade only by risk aversion,
prediction market prices can be interpreted as a weighted average of traders’ beliefs
[Wolfers and Zitzewitz 2006; |[Beygelzimer et al.|2012]], a natural reflection of the “wis-
dom of the crowd”. However, when agents are budget constrained, discontinuities and
idiosyncratic results can arise [Manski||2006; Eisenberg and Gale|[1959] that call into
question whether the equilibrium price can be trusted to reflect any kind of useful
aggregation.

In this paper, we examine more closely what happens in a prediction market when
agents are budget constrained, and show that results can still be meaningful. We also
look at the implications when traders have imprecise beliefs, meaning they know only
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that the probabilities of events fall into some convex set, but are not sure of, or not
willing to commit to, a single point belief.

We consider prediction markets with an automated market maker [Abernethy et al.
2011; Hanson![2007]. In such markets the market maker always offers a trade. All
agents trade (buy or sell) with the market maker. This is in contrast to a two-sided
market where the market only matches agents with a mutual agreement to trade. The
interesting market makers are the ones that are (myopically) incentive compatible in
the sense that the best strategy for an agent is to move the market price to equal his
own belief. Such markets have been extensively studied and are fairly well understood.

In this paper we investigate scenarios where incentive compatibility breaks—that
is, an agent cannot move the market price to exactly equal his belief—for two different
reasons: budget constraints and imprecise beliefs.

The first scenario in which an agent may not be able to move the market price to
his own belief is when he has a budget constraint. The meaning of a budget constraint
is not immediately clear in this context. We use the definition of a natural budget
constraint introduced by [Fortnow and Sami|[2012]. Any trade an agent makes could
potentially incur a loss. If an agent buys a security, then his loss would be the price he
paid to buy the security in case it does not pay off. If the agent sells a security and if
the event actually happens then he would have to pay out money as promised by the
security. His loss would be the pay out minus the price he got from selling the security.
In such cases, the market could ask the agent to post a collateral equal to make sure
he has the ability to pay for the security. In general an agent could trade a bundle
of securities, selling some and buying others. The worst case loss of such a trade is
the maximum loss the agent could incur, taken over all possible outcomes. The natu-
ral budget constraint, for a certain budget, says that the agent is only allowed those
trades for which the worst case loss is no greater than the budget. An alternate inter-
pretation of this constraint for securities of binary events is obtained by considering
selling a security for an event as equivalent to buying a security for the complement
of the event. Then the agent only buys securities and in that case the natural budget
constraint says that the total cost of the securities the agent buys cannot exceed his
budget.

[Fortnow and Sami||2012] considered the following natural question: given that an
agent cannot move the price to his own belief, is it possible that he moves the price in
a straight line towards his belief? It seems quite natural that the movement of prices
should be in the direction of the belief. Somewhat surprisingly they showed that for
any scoring ruleE] there always exist situations in which the best strategy of the agent
is not to move the price along the straight line towards his belief.

In this paper we shed more light on this seemingly surprising result by considering
the geometry of the budget constraints. In particular our results are as follows.

— We give a simpler, geometric proof of the impossibility result of [Fortnow and Sami
2012].

— The budget set is the set of feasible prices that the agent can move the market price
to, under the budget constraint. We show that the budget set is an intersection
of Bregman balls?| with centers at points corresponding to payoffs for all possible
outcomes. The radii are determined by the current price.

1 A scoring rule is a more general form of incentivizing agents to elicit information about probabilistic
events. It specifies a payoff for an agent making a certain prediction as a function of the observed outcome.

2These are balls where the distances are measured by Bregman divergences. Bregman divergences general-
ize the notion of a distance to asymmetric functions. They are well studied and play a crucial role in convex
optimization, machine learning, etc.

EC’13, June 16-20, 2013, Philadelphia, PA, Vol. 9, No. 4, Article 39, Publication date: June 2013.



39:3

— We give a precise characterization of how an agent with a budget constraint moves

the market price. The agent moves the market price to the Bregman projectimﬂ
of his belief onto the budget set. This is very intuitive, the agent does try to get
as close to his belief as possible, only as measured by the Bregman divergence. A
particularly interesting case is the quadratic scoring rule, for which the Bregman
divergence is the square of the Euclidean distance. In this case the Bregman projec-
tion is just the Euclidean projection. The reason the new price is not directly in the
direction of the belief is due to the shape of the budget set.
Another message of this characterization is that the current price is only important
to determine the budget set. It shows why the impossibility result of [Fortnow and
Sami|2012] is not that surprising on hindsight. The projection may be locally in-
sensitive to the current price. If the current price changes a little bit such that the
tight constraint in the budget set does not change, then the projection also does not
change.

— We consider another natural question that arises due to budget constraints. Sup-
pose that there is a sequence of agents with the same belief but with small budgets,
who move the market price one after the other. Is the eventual price the same as
what a single agent, with the same belief and with a budget equal to the sum of the
budgets of all the previous agents, would move the price to? We answer this ques-
tion in the affirmative, for the case of complete markets, i.e., there is a security for
every possible outcome of the market and the market elicits the complete probabil-
ity distribution. This conclusion is heartening: it says that prediction markets can
aggregate information even in the presence of budget constraints as long as there
are sufficiently many agents with the same belief. We call this the associativity of
budgets property.

The second scenario we consider is when agents have set theoretic beliefs instead of
point beliefs. What we mean by this is that the agent may not know the exact proba-
bility distribution. Instead, we assume that the agent only knows that the probability
distribution belongs to a certain set. For example, suppose that there are two binary
events, A and B. The agent may only know that the probability of event A is greater
than the probability of event B, or that the probability of either A or B is greater than
50%. We model the behavior of such an agent by saying that he only trades when he is
guaranteed a positive expected payoff for all probability distributions in his belief set.
In particular the optimal trade for the agent is the one that maximizes his worst case
expected payoff where the worst case is taken over all probability distributions in his
belief set.

Our main result for set theoretic beliefs is once again a geometric characterization
of the optimal trade for an agent. We show that the optimal trade for an agent is to
move the market price to the Bregman projection of the current price onto his belief
set. This characterization in terms of the Bregman projection is not as intuitive as in
the case of budget constraintsf| A priori, it is not even clear that there is always a
trade that gives a strictly positive worst case payoff whenever the current price is not
in the belief set. It turns out that for any hyperplane that separates the current price
from the belief set, the trade that corresponds to the normal of this hyperplane always
has a positive worst case payoff. This implies that the final price should end up on

3 The Bregman projection of a point onto a set is the point in the set that is closest to the given point when
measured in terms of a Bregman divergence.

4 Bregman projections are actually of two types, where the point to be projected could be the first argument
or the second. These could be different due to the asymmetry of a Bregman divergence. The Bregman pro-
jection in the budget constraint case is when the point is the first argument and the Bregman projection in
the set theoretic belief case is when the point is the second argument.
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the boundary of the belief set, since we can always find a trade with a positive worst
case payoff otherwise. This does not say why this final point should be the Bregman
projection. We still don’t have an intuitive explanation for this phenomenon. This is re-
flected in the difference in the proof of this result as compared to the one for the budget
constraint. While the proof for the budget constraint is straight forward, the proof of
this result uses strong convex programming duality. The proof idea is the same as the
one used by [Grunwald and Dawid|2004]] who used it to show the equivalence between
finding an entropy maximizing distribution and a distribution that minimizes a par-
ticular worst case loss. We also need an assumption that the belief set is convex and
satisfies Slater’s condition, which is a mild condition under which strong duality holds.
This result is once again a theoretical justification for the effectiveness of prediction
markets. It shows that prediction markets can aggregate information even when the
agents are not completely sure of the probability distribution.

Our set theoretic belief model gives an interesting alternate perspective on the prob-
lem of eliciting properties of probability distributions considered by [Lambert and
Shoham|2009]. There, a property is modeled as a partition of the set of all probability
distributions. They consider proper scoring rules to elicit the set in the partition that
contains the agent’s belief. They showed that a proper scoring rule exists if and only if
all the sets in the partition form a Voronoi diagram. We give an alternative perspec-
tive to this problem via our set theoretic belief model and compare the advantages and
disadvantages of our model with theirs in Section

Our set theoretic belief model is also related to [Bhattacharjee and Goel|[2006 [2007]
who consider the problem of ranking a set of n binary events by decreasing order of
probability. They give a mechanism where agents with limited information, such as
that event A is more likely than event B can be incentivized to participate in the mech-
anism. The mechanism aggregates information from all participants and produces a
ranking. We note that their mechanism is actually equivalent to a prediction market,
the agents with limited information fit exactly in our model of set theoretic beliefs.

Other related work

There is a rich literature on scoring rules and prediction markets. Some of the much
studied scoring rules are the quadratic scoring rule of [Brier|1950]] and the logarith-
mic market scoring rule (LMSR) of [Hanson|2007]. We consider convex cost function
based prediction markets, which is without loss of generality. Even though they did not
phrase it this way, [Gneiting and Raftery||2007]] showed that any proper scoring rule
is equivalent to a convex cost function based prediction market. Cost function based
prediction markets have been considered earlier by [Hanson|[2003; |Chen and Pennock
2007]]. [Chen and Vaughan|2010] showed an interesting equivalence between complete
cost function based prediction markets and no-regret learning algorithms. [Abernethy
et al.|2011] used this connection to design market makers for more general prediction
markets. They also showed that under certain assumptions the choice of a convex cost
function based prediction market is without loss of generality.

[Fortnow and Sami|2012] introduced the notion of a natural budget constraint for
scoring rules and considered the question of whether there exists a scoring rule such
that the forecast of the agent is always on the straight line joining the market price
and the agent’s belief. They showed that no such scoring rule exists and also showed
that it is not always possible to infer the agent’s belied from his forecast, even when his
budget is public knowledge. We shed more light on their impossibility results and give
a richer characterization of the agent behavior in the presence of budget constraint.
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2. PRELIMINARIES

Consider a probability space with a finite set of outcomes 2. A security is a financial
instrument whose payoff depends on the realization of an outcome in 2. In other words,
the payoff of a security is simply a random variable of the probability space. A security
can be traded before the realization is observed with the intention that the price of
a security serves as a prediction for the expected payoff of the outcome. A prediction
market consists of one or more securities, which are represented by a vector of random
variables, denoted by ¢ : 2 — R™. We will refer to ¢ simply as a security, keeping in
mind that it is really a set of n securities.

An automated market maker always offers to trade a security, for the right price. In
fact the price is the current prediction of the market maker for the expectation of ¢.
A cost function based market maker is based on a differentiable convex cost function,
C : R"™ — R. The domain of C is the vector of the number of outstanding share for the
security ¢, which we denote by ¢ € R™. We also refer to ¢ as the state of the market.

The instantaneous price of the security is simply the gradient of C at g:

p(g) =VC(q) .

The price of a security changes continuously as more of the security is traded, so it is
useful to consider the cost of trading a given quantity of the security. Buying 6 € R"
units of the security (where a negative value corresponds to selling) costs

q+9
/ p(@)dg = Clq+6) — Cg) -

When the outcome w is realized, the ¢ units of the security pays off an amount of
0 - ¢(w). Thus, the realized utility of a trader whose trade § moved the market state
fromqgtoqg =qg+dis

U(d ,wiq) = (¢ —q) - ¢(w) = C(d') + C(q) -
Let M be the convex hull of the payoff vectors:
M = conv{p(w) : w € Q} .

It is easy to see that M contains exactly the vectors y € R™ which can be realized
as expected payoffs E[¢] for some probability distribution over Q2. For a trader who
believes that E[¢] = u, the expected utility takes form

Uld wq) =E[U(¢ wiq)] = (¢ —q) - n—C(d") +Cla) -
A key property satisfied by expected utility is path independence: for any q,q,q' € R™
U :q) + U@ pmq) =U(d wia)

i.e., risk-neutral traders have no incentive to split their trades. For a risk-neutral
trader, ¢ € R™ is an optimal action if and only if

n=VC()=rplq)

(this follows from the first-order optimality conditions). In other words, the trader is
incentivized to move the market to the prices corresponding to his belief as long as such
prices exist. Therefore, we sometimes refer to the price reached by a trader’s action as
the prediction.

5We allow trading fractions of a security. Negative values correspond to short-selling.
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There may be several actions yielding the same expected utility. We make a standard
assumption that our market is expressive in the sense that

M Cclimp

where cl denotes the closure in the standard topology and im p := {p(q) : ¢ € R"} is the
image of the price map. In this case, risk-neutral traders can always express beliefs
u € M (potentially in the limit of infinitely many trades, if © € M\ im p).

Example 2.1. The first example of a cost function, which is expressive for arbitrary
payoffs ¢, is the quadratic cost function defined by C(¢) = ||¢||>. In this case, p(q) = g,
and U(q', j1;q) = %|lg—pl|* — %[|¢’ — p||. It is clear that the expected utility is maximized
when p(¢') = ¢' = p.

Example 2.2. Our second example is Hanson’s logarithmic market-scoring rule
(LMSR), which is expressive for the complete market defined by the indicator payoff

function ¢ : Q — R%

b () = {1 ifw=uw

0 otherwise.

In this case M is the simplex in R and beliefs ; are in one-to-one correspondence with
probability distributions over (2. The LMSR cost function is

C(g) =In (Zweﬂ eqw)
with the price

edw _
Pull) = oy = O

!’
wen €1

For ;. € M, the expected utility function takes form

U :0) = > o (npule’) — pa(@)) = KL(ulp(a)) - KL(xlp(a) -

where KL(p||v) = Y° pw In(pe /1) is the KL-divergence. KL-divergence is not sym-
metric, but it is non-negative, and zero only if the arguments are equal. Thus, the
expected utility is clearly maximized if and only if u = p(¢’).

The above two examples illustrate that the expected utility can be written as the
difference of two terms measuring the distance between the belief and the market
state. This is true not just for the two costs listed above but for arbitrary convex dif-
ferentiable costs C. The distance measure above is the mixed Bregman divergenceﬁ To
define the Bregman divergence formally, first let C* : R” — R*, where R* = R U {0},
be the convex conjugate of C:

C*(v)= sup [¢-v—C(q)] .
q’'€ER™

Since C* is a supremum of linear functions, it is convex lower-semicontinuous. Up to a
constant, it characterizes the maximum achievable utility on an outcome w as

swp Ulgwig) = O (9(w)) + [C(@) — g~ 9()] -

60ur notion of Bregman divergence is more general than typically assumed in the literature.
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The term in the brackets is always finite, but C* might be positive infinite. We make a
standard assumption that C*(¢(w)) < oo for all w € , i.e., that the maximum achiev-
able utility is bounded by a finite constant. Since the maximum utility of a trader
is also the maximum loss of the market maker, this assumption means that the loss
of the market maker is bounded by a finite constant. By convexity, this implies that
C*(n) < oo for all 4 € M. The Bregman divergence derived from C is the function
D :R" x R" — R* measuring the maximum expected utility under belief

D(q,p) =C(q) +C* (1) —p-q = sup Udsmq) -
qle n

From the convexity of C and C* and the definition of C*, it is clear that:

— D is convex and lower-semicontinuous in each argument separately
— D is non-negative
— Dis zero if and only if p(q) = VC(q) =

By the bounded loss assumption, Bregman divergence is finite on u € M. For y € M,
we can write

U(q',p:q) = D(q,pn) — D(¢', ) (1)

Thus, maximizing the expected utility is the same as minimizing the Bregman diver-
gence between the state ¢’ and the belief p.

For the quadratic cost, we have C*(v) = 1||v||? and D(q,v) = 1|l¢ — v||?. For LMSR,
we have C*(v) = =) gV, Inv,, with the usual convention 0In0 = 0, and D(q,v) =

KL(v[|p(q)).

We will slightly abuse notation and frequently identify w with ¢(w). For instance, we
will write D(q,w) instead of the more verbose D(q, ¢(w)). This is a natural identification
since ¢(w) corresponds to the belief realized by the distribution that puts all the mass
on the outcome w.

3. BUDGET CONSTRAINTS

TODO-MD: we need better pictures demonstrating various constructions in the paper.
At the minimum, in Figure [3] replace the third figure by a figure demonstrating the
construction of L with the segments £y, /; and maybe the outline of the initial convex
hull conv (X, p).

Trading in prediction markets needs an investment of capital. It is possible that an
agent loses money on the trade, in particular U(¢’,w;q) could be negative for some w.
One restriction on how an agent trades could be that he is unable to sustain a big loss,
due to a budget constraint. In this section we study how such a restriction affects the
behavior of an agent trading in the market. We consider the notion of natural budget
constraint defined by [Fortnow and Sami|2012]] which states that the loss of the agent
is at most his budget, for all w € Q. Formally, given a starting market state ¢ and a
budget of B > 0, the set of market states that satisfy the natural budget constraint is

B(q,B) ={¢ :U(q,w;q) > —Bforallw € Q} .

We also refer to this set as the budget set. Next lemma shows that B(¢q, B) can be
viewed as an intersection of D-balls centered at w for w € Q. Specifically, let B, (r)
denote the ball of radius r centered around w:

B,(r)=1{q¢ : D(¢',w) <r} .
LEMMA 3.1. B(q,B) =(\ycq Bu(D(q,w) + B).
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Fig. 1. o —current state, x —belief, © —projected belief. (top-left) three circles bounding the allowed final
states for budget 0.1 and projections of two different beliefs; (top-right) two different budget levels (0.1 and
0.03); (bottom) sequence of projections for varying budgets.

PROOF. The proof is immediate from Eq. (1). Note that ¢’ € B(q, B) if and only if
U(¢',w;q) > —B for all w. For a single w this is equivalent to D(¢’,w) < D(q,w)+ B, i.e.,
¢’ € B, (D(q,w) + B). Combining across all w gives the intersection. O

By convexity and lower-semicontinuity of D, Bregman balls B, (r) are convex and
closed. Therefore the budget set is also convex and closed. It is also non-empty since
q € B(q, B). The next question is, given such a budget constraint, what is the optimal
action of an agent? Again, Eq. implies that a risk-neutral agent will want to move
the market to the point that is closest to his belief 1, while staying in the budget set:

argmax U(q', u;q) = argmin D(q', p) .

q'€B(q,B) q'€B(q,B)
In general, there may be multiple ¢’ optimizing this objective, or, as in the case of
a belief 1 € M\ imp (and an infinite budget), the argmax set might be empty and
the optimum may be only achievable in a limit. However, as the next theorem shows,
there exists a unique price © that is reached in any of the cases. (TODO?: can we show
that for finite B there always exists some (non-unique) action § solving the problem?
Maybe we can show that if the maximum were only obtained in a sequence, i.e., at a
point 7 ¢ im p, then an infinite budget is required relative to some outcome w.)

THEOREM 3.2. Foranyq <€ R", B> 0and p € M, there exists a unique v such that
any sequence {qi}7° | maximizing

max U(qd, u; (2)
lmax (d's1159)
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satisfies p(qx) — V.

PROOF. TODO-MD: The general idea is to take the Fenchel dual of Eq. (2), show
that the dual has a unique solution 7 and that for the maximizing sequence, D (g, 7) —
0. O

In the next section, we analyze Eq. in more detail. In the remainder of this
section, we revisit the question considered by [Fortnow and Samil [2012]]. They asked
whether there is a market scoring rule such that the optimal states under the budget
constraint induce prices that lie on the straight line connecting the initial price and
the true expectation, and answered in the negative. We show a simple geometric proof
of this result for cost function based markets.

TODO: I started modifying the proof below, but then realized that it is not completely
straightforward. There are various hidden continuity assumptions, e.g., p(¢) is implic-
itly assumed to be continuous and invertible around the initial state—invertibility is
assumed when we say that it is possible to maintain v/, at the same distance from wy
as vg. Also, obviously, the statement should require at least two dimensional M.

LEMMA 3.3. For all C, there exist q, B and p such that an optimal action q yields
market prices p(q) which are not on the line joining p(q) and p.

PROOF. Suppose for now that we can choose ¢, B and p such that an optimal state
q is on the boundary of the ball B,,, (D(q,wo) + B) for some unique wy, i.e.,

D((jvw()) = D(q7w0) +B
D(§,w) < D(g,w) + B for all w # wy.

Further, p(q) # ¢(wo). OLD PROOF CONTINUES with vy := p(q) and p* = p(4): Sup-
pose that vg, u* and p are all on a straight line. (If not, then we are done already.)
We claim that there exists 1, not also on the same straight line such that condition
Eq. (3) also holds when v is replaced by v/,. The existence of such a v/, follows from the
continuity of D*: if we choose 1|, close enough to v then the strict inequalities should
continue to hold. Given that the strict inequalities hold, one can always choose v, so
that the divergence from ¢(wy) does not change (since vy # ¢(wp)) and that it is not
on the given straight line. This leaves the budget constraint essentially unchanged,
B, which is the only tight contraint is unchanged while the change in the other con-
straints is too small to make them tight. Therefore p* is still the projection of i onto
the budget set and hence the optimal prediction, with 1|, as the starting point and bud-
get B. Since v/, is not on the straight line containing 1 and p*, it is the counter example
as needed.

We still need to justify the original choice of vy, B and u. Essentially we need to
find a point on the boundary of the budget set where there is only one tight con-
straint. We give one particular construction here. We start with the choice of u* be-
ing any point such that the largest divergence to one of the ¢(w)’s is unique, i.e.
arg max, { D*(¢(w); 1*)} is unique, and say is equal to {w }. Notice that condition Eq.
holds if we choose vy = ¢(wp) and B = D*(¢(wp); u*). Again by the continuity of D*,
if we choose v, to be close enough to ¢(wp) and set B = D*(¢p(wg); u*) — D*(¢p(wo); vo)
then the inequalities in Eq. will continue to hold. Finally we need to pick p such
that its projection is p*. This is easily accomplished by picking i to be just outside the
boundary near p*. O

3

4. BUDGET ADDITIVITY

In this section, we consider another natural question that arises due to budget con-
straints. Suppose that there is a sequence of agents with the same belief but with
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small budgets, who move the market price one after the other. Is the eventual price
the same as what a single agent, with the same belief and with a budget equal to
the sum of the budgets of all the previous agents, would move the price to? We give
affirmative answer to this question, and refer to this property as budget additivity.

4.1. Optimality conditions
The optimization problem under the budget constraints can be written as
max U(q, 13 o)

aerR” 4)
st. U(q,w;q0) > —B YweQ .

The set of solutions of Eq. will be denoted Q(B;q). The belief ;i is assumed to be
fixed throughout this section, so we suppress the dependence on . In Theorem

we showed that all the elements Q(B; o) must yield the same prices. The following
theorem gives a more detailed structure:

LEMMA 4.1 (KKT LEMMA). Let qo € R™ Then q € Q(B;qo) for some B € R if and
only if there exists X C () such that

(@) U(g,z;90) = Ul(q,2";q0) for all z,2" € X
(b) U(q,w;q0) > Ulg,z;q0) forall z € X and w € Q
() p(q) € conv(X, )

PROOF. We begin by forming a Lagrangian of Eq. (), with non-negative multipliers
A= ()‘w)wEQ:

L(g,\) = U(g, 1:90) + > Mo (U(q,wi q0) + B) -

By differentiability and concavity of the objective and constraints, KKT conditions are
both necessary and sufficient for optimality. KKT conditions state that ¢ and ) solve
the above problem if and only if the following hold:

— primal feasibility: U(q,w;qp) > —B for all w €

— dual feasibility: A > 0

— first-order optimality: V1L(q,\) =0

— complementary slackness: A\, (U(q,w;qo) + B) =0 forallw € Q

We first show that KKT conditions imply Assume that KKT conditions hold.
Set X to be the set of outcomes with tight constraints, i.e., X = {z € Q: U(q,z;q) =
—B}. For this X, the conditions [(a)] and [(b) hold by primal feasibility. We prove [(c)| by
analyzing first-order optimality. First note that:

ViU(q,viq0) =v —VC(q) =v —plq) -
Thus, first-order optimality is equivalent to

VaU(g, 1 g0) + Y A ViU (g, w;q0) = 0

p=p(@) + > Aulw—plq)) =0

_ D, Aww

By complementary slackness, A\, = 0 for w € Q\ X, so this shows
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Now assume that hold. If X = (), then KKT conditions hold for B =
max,[—U(g,w;qo)] and A = 0. If X £ (), then KKT conditions hold for B = —U(q, z; q9)
(where z € X), and )\, representing p(q) as a convex combination of X and p. O

4.2. Perpendiculars

Before we state our main result, we need to define the notion of a Bregman perpen-
dicular to an affine space. For the quadratic cost, this notion will exactly coincide with
the usual Euclidean perpendicular.

Let A be an affine space in R™ and g € R” be a market state such that p(q) ¢ A. Let
a be an arbitrary point in A and define parallel affine spaces to A as

Ay = A+ Mp(g) —a)
for A € R. Finally, let

vy = argmin D(q,v) .
vVEAL
By strict convexity of D in the second argument, v, is either a singleton or an empty
set. Let A be the set of \’s where v, is not an empty set and v, € imp (i.e., v, can be
realized by some market state). Thus, for A € A, C* and hence D are subdifferentiable
at vy, and by first-order optimality,

(0C*(va) —q) N AT = (0C*(va) —q) N Ax = &D(q,vA) N Ax #0

where 0 denotes the subgradient and (-)* the orthogonal complement.

A Bregman perpendicular to A through ¢ is a map v : A — (v, q,) defined over
A € A, where g, is some point from 9C*(vy) N (¢ + A*); for A = 1 we specifically choose
gr = q. We stress that in our definition points v, are uniquely determined, but ¢, are
not necessarily unique (except for ¢ at A = 1). For any pair of points ¢, ¢\ and any
a,a’ € A, we have (¢gx — ¢») - (¢’ — a) = 0, hence the name perpendicular.

Note that v has a sense of direction as determined by ), increasing from A towards
q. We will say that ¢, precedes g, if A < X’ (and similarly for v, and v,.). We will use
the shorthand [], to refer to the map A\ — v, and the shorthand [v], to refer to the
map A — qy.

TODO-MD: need to show the continuity of [y],. This is true over ridom C*. Can we
show it more broadly over dom dC*?

TODO: work out perpendiculars for LMSR and quadratic.

4.3. Main result

To state our main result, we need to introduce a few definitions and make some regu-
larity assumptions.

Let aff(X) denote the affine hull of the set X (i.e., the smallest affine set including
X) and ri X the relative interior of X (i.e., interior relative to the affine hull). Since Q
is finite, the realizable set M = conv () is a polytope. Its boundary can therefore be
decomposed into faces. More precisely, we will say that X C Q, X # (), forms a face of
M if there exists a hyperplane H intersecting M in conv X, such that all of M\ conv X
lies on one side of H.

With the definitions at hand, we make the following regularity assumptions on the
cost function, initial state, belief, and the payoff function:

ASSUMPTION 1 (INFORMATIVE PRICES). D(q,v) is only a function of p(q) and v.
ASSUMPTION 2 (REALIZABLE INITIALIZATION). p(qo) € M.
ASSUMPTION 3 (NON-DEGENERATE BELIEF). p € ri M.
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ASSUMPTION 4 (ACUTE ANGLES). For any face X C Q and any q such that p(q) €
M, let ~ be a perpendicular to aff(X) passing through q. Let (vy,q)) and (vx,qy) be
points on ~y such that \' > X and vy,vy € M. Then forany w € Qand z € X:

(av —qpn) - (w—2) >0 .

The assumptions of realizable initialization and non-degenerate belief are intro-
duced to simplify our analysis and exclude degenerate special cases. The informative
prices assumption is more restrictive. However, it is satisfied by many market scoring
rules, including the quadratic cost and LMSR. (TODO: we should list a wider class
of costs that satisfy this assumption. For instance, costs derived from the traditional
Bregman divergences. Also, can we either remove this assumption or show that it is
necessary?) Finally, acute angles seem to be a necessary condition and we will show
that without acute angles, budget additivity need not hold. (TODO: prove characteriza-
tion when the acute angles hold for quadratic and work out counterexamples showing
that the assumption is necessary. Can we also show something stronger, e.g., that the
budget additivity holds if and only if acute angles hold?)

Recall that Q(B; qo) denotes the set of solution to Eq. (4). If Qy C R", we will also use
the shorthand Q(B; Qo) == | 4€Q0 Q(B; q). Taking advantage of the informative prices
assumption, we also introduce the notation 7(B;vy) for the unique prices achieved by
solving Eq. () starting from any qo € p~!(1). We have that Q(B; ¢) = p~* (2(B;p(q0)))-
We are ready to state our main result.

THEOREM 4.2 (BUDGET ADDITIVITY). Assuming informative prices, realizable ini-
tialization, non-degenerate belief and acute angles, for all B, B’ > 0,

Q(B+ B';q90) = Q(B';Q(B; q0)) ,
or, equivalently,
v(B + B';v) = v(B';9(B;w))

where vy = p(qo)-

PROOF. If vy = p then the statement trivially holds, so in the remainder
we assume vy # p. The plan is to exhibit a sequence of complementary pairs
(v0,9), (v1,q1)5 -, (Vk,qx), Vi = u, connected by directed curves called segments

Ly, ..., Lx_1. Our intention will be to show that the budget associativity holds along the
union of these segments L = Uf;ol ¢;, and that [L], contains the solutions {7 (B;vy) :
B >0}

To proceed, we associate each segment with an active set X; C Q such that [¢;], C

conv(X;, ), and prove that for any pair of points ¢,¢' € [¢;], where ¢ precedes ¢, the
KKT lemma holds, i.e.,

(1) U(d,x;q) =U(¢,2';q) for all z, 2’ € X;
2) U(¢,w;q) > U(q,x;q) for all z € X;

We refer to this statement as the Segment Lemma (proved in the next section).

The key point of our construction will be the monotonicity of the sequence X;, such
that Q D Xy D X; D .-+ D Xj_1 # 0. The proof of the theorem then follows by using
path independence of the utility function with the Segment Lemma. We first show that
for any (¢,v) € ¢; and (¢’,v’) € {; where i < j, we have ¢’ € Q(B; q) for some budget
B. By the monotonicity of sequence Xy, X1,..., X;_1, and the Segment Lemma we can
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derive that for all z € X; andw € Q
U(d',w;q)

=U(q,w;qj) + U(gj,w; gj—1) - + U(git+1,w; q)

> U(q z;545) + U(gy. 25¢5-1) - + U(gir1,239)

=U(d,7;q) .
And analogously, for all z,2’ € X,

Uld',z5q) =U(d',25q) -
Thus, by the KKT lemma, ¢’ € Q(B; q), or equivalently
V' = 0(B;v) (5)

where B = —U(¢/, z;q) for x € X (all z € X yield the same value B).

To finish the proof of the theorem, note that [L], is connected and contains v, = g,
so Eq. implies that [L], consists exactly of the points ©(B; q) for B > 0. Moreover,
if v = 0(B;w) € [¢;], and v/ = 0(B + B'; 1) € [¢j], then some pairs of the form (v, )
and (v/,¢’) must lie on L, and for any =z € X;; C X; C Xy,

U(q',z;9) = U(d,2590) — U(g,2590) = —(B+B') + B=—-B" .
Hence v/ = #(B’;v) and the theorem follows, provided that we can show the segment
lemma. O

4.4. Segment Lemma

Consider the initial state ¢g and its price 1. As in the proof of the theorem, assume that
Vo # p. Let X be the smallest face such that vy € conv(X, u). Let v be a perpendicular
to aff(X) going through ¢y. The curve [y], passes through 1, and eventually reaches
the boundary of conv(X, ;1) at some point v;. The portion of v going from v, to v; is our
first segment ¢. It has the same sense of direction as ~.

LEMMA 4.3 (SEGMENT LEMMA). Let q,¢’ € [{], such that q precedes ¢'. Then:

(1) U(q',x3q) =U(q',2';q) for all z,2" € X
@) U(¢,w;q) >U(¢,x;q) forall x € X and w € Q

PROOF. For the first part, note that since ¢ C v and ~ is perpendicular to aff (X), we
have

Uld,2"5q) = U(d ,250) = (¢’ —q) - (2 —2) =0 .
For the second part, we directly appeal to the acute angles assumption:
Uld wiq) = U(d",23¢) = (¢ —q) - (w—12) >0 .
O

The above construction gives us the first segment ¢y and the corresponding set Xj.
The segment terminates at the point (11, ¢1). There are two possibilities:

(1) v; = p; in this case we are done;

(2) v1 lies on a lower-dimensional face of conv(Xy, 1t); in this case, we can use the above
construction again, starting with ¢;, and obtaining a new set X; C X, and a new
segment /; and iterate

Note that the above process eventually ends, because with each iteration, the dimen-
sion of X decreases.
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5. PREDICTION MARKETS WITH SET THEORETIC BELIEFS

The usual assumption in the study of prediction markets is that the agent knows (or
has a belief about) the expectation of the security. In this section, we relax this as-
sumption to allow for set theoretic beliefs, by which we mean that all that the agent
knows is that the expectation lies in some subset of R", called the belief set. For exam-
ple, suppose that we have two securities for the indicator variables for two events A
and B in the probability space. It is possible that an agent knows that event A is more
likely to happen than event B, without knowing the exact joint probability distribution
of A and B. This can be represented by the set u4 > up intersected with the subset of
all possible pairs of probabilities, which is [0, 1]%.

We consider the incentives for such an agent to trade in the prediction market. Our
model of the agent is that he will trade in the market if he is guaranteed to profit no
matter what the true expectation is, as long as it is in his belief set. Taking this further,
the agent’s prediction will be the one that maximizes the worst-case payoff, where the
worst case is taken over all expectations in his belief set. Given a belief set B C M and
an initial state ¢, the agent aims to maximize

. !
Inax min U(qd's159) - (6)
As with point beliefs, the maximum may only be achievable in the limit, but it will
always coincide with a unique target price, as the next theorem shows. (TODO?: can we
also prove the converse? i.e., any sequence of actions {¢;};>, with p(qx) — /i maximizes
the expected utility?)

THEOREM 5.1. Suppose that an agent has a non-empty belief set B C M that is
closed and convex. Then for all q, any sequence of actions maximizing Eq. (6) moves
prices to the Bregman projection of q onto B, which is

fi == argmin D(q, u) .
neB

PROOF. Rewrite Eq. (6) as follows

max min U(q’, u; ¢) = min max U(q, ; 7
max minU(q', u; q) = min max U(q', 4;) M

— . /_ _C AN . C
%é%q,ngg{q n—=C(q)—q-p+Ca)}

:gleig{c*(ﬂ)*q~u+0(q)} (8
= min D(q, u) = D(q, 1) - )
neEB

In Eq. (7) we are able to switch max and min by strong duality, because utility is linear
in u, concave in ¢/, and B is compact and convex. (TODO-MD: need a reference here,
e.g., we could use some Fenchel duality result from Rockafellar). In Eq. we simply
use the definition of C*. To complete the proof, let {¢;}%> ; be a maximizing sequence in
Eq. (6) and ;1. € B the corresponding worst-case beliefs, i.e., ), == argmin, cp U(qr, 145 )-
We need to show that p(qx) — fi.

From Egs. (@)—(9), we know that U(qx, ux;q) — D(q, f1). Also, from the optimality of
. relative to gy, and the optimality of /i on the right-hand side of Eq. (7), we obtain

U(gqks b3 @) < Ulars f:q) < D(g. ) -
Thus, U(qx, ft;q) — D(q, ). By Eq. (1) and the non-negativity of D, we then must have
D(gk, 1) =0 .
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This means that p(g;) — . (TODO-MD: The last step needs a reference. It should be
standard for Bregman divergences, but our definition is a bit more general than the
most. We should be able to prove this by writing D(qx, 1) = C*(i) — C*(p(qx)) — (it —
p(qk)) - gk, and using strict convexity of C*: Proceed by contradiction. If p(qx) # [i, then
one of the orthants with the origin at /i must contain infinitely many p(qx) separated
from /2 by a hyperplane H that cuts across all rays in the orthant. The “Taylor series”
lower bound on C* implied by D gets worse along the rays in the orthant, so it suffices
to consider the lower bounds of points in the intersection of the orthant and the hyper-
plane H. This intersection, call it K, is compact. For each p(g;) in the orthant, pick the
corresponding point v, in K and calculate the Taylor-series gap. Note that the gap of vy,
converges to zero, because the gap for p(g;) converges to zero. Let v be a limit point of
the sequence (exists by compactness). Consider C*(j1/2 4+ v/2). Since the Taylor series
gap converges to zero, we must have C*(j1/2+v/2) > C*(1)/2+ C*(v)/2, contradicting
strict convexity of C*.) O

[Lambert and Shoham!2009|] considered the elicitation problem where the goal of
the market maker is to elicit a weaker information structure instead of an exact prob-
ability distribution. This is modeled by considering a partition of the space of all prob-
ability distributions and the goal is to elicit which set in the partition contains the
actual probability distribution. [Lambert and Shoham|2009] then considered scoring
rules where the agent is asked to report a set in the partition and is compensated
based on his report and the eventual outcome. The motivation for considering such a
scoring rule instead of simply eliciting the exact probability distribution and inferring
the answer from that, is that the dimension of the complete market needed to elicit
the entire probability distribution may be prohibitively huge. Reporting a set in the
partition would be much easier for the agent when the number of sets in the partition
is much smaller than the number of possible outcomes. The conclusion of [Lambert
and Shoham|2009] is that strictly proper scoring rules exist if and only if the partition
forms a (weighted) Voronoi diagram.

We note that quite often for interesting partitions one does not need to run a com-
plete market to elicit the information about which partition contains the belief of the
agent. There exist securities, with a dimension smaller than the entire outcome space,
that are sufficient to elicit the information needed. For example, suppose that the out-
come space consists of n binary events, i.e., each outcome corresponds to a binary string
of size n with the i'" bit indicating whether the i*" event occured or not. If the goal is to
elicit the most likely event then it is sufficient to have n securities, one for each event,
instead of 2" securities, one for each outcome. In spite of this, there is another reason
why eliciting the probabilities would be infeasible, that the agent himself might not
know the exact probabilities. In the above example, an agent might only know which
is the most likely event, or he might know that the most likely event is one out of two
or that event i is more likely than event j. The set theoretic belief model shows that it
is still possible to aggregate information from such agents.

The advantage of the set theoretic belief model over the model in [Lambert and
Shoham|[2009] is that this allows different agents to have different information struc-
tures while the scoring rule remains the same. It works both ways, if an agent has a
weaker information than what is needed then he can still contribute, while if an agent
has a stronger information than what is needed then he has the opportunity to give
a stronger prediction. An example of the latter is as follows, consider once again the
example of n binary events earlier where the goal is to elicit the most likely event. If
an agent knows not only which is the most likely event but also that the probability of
this event is at least 10% more than the next highest probability, then that would be
reflected in his prediction. Even though we are not interested in this margin, it leads

EC’13, June 16-20, 2013, Philadelphia, PA, Vol. 9, No. 4, Article 39, Publication date: June 2013.



39:16

to a greater confidence in our prediction of the most likely event. Also we only need
the sets in the partition to be convex, which is a weaker requirement than them being
Voronoi diagrams as needed by [Lambert and Shoham!2009].

6. CONCLUSIONS

In this paper, we studied two different scenarios in prediction markets where an agent
cannot simply move the market price to his current belief: (1) when the agent has a
budget constraint that restricts the trades he could make; or (2) when the agent has
limited information about the underlying probability distribution, in the sense that he
only knows that the probability distribution lies in a convex set.

For the budget constrained case, we presented a geometric characterization of the
user’s behavior: there is a convex budget set within which the user can move the mar-
ket state, and the optimal strategy of the user is a Bregman projection of his belief
onto the budget set. Further, we extended this characterization to show that complete
prediction markets have budget associativity, i.e., a sequence of agents with the same
belief is equivalent to a single agent with the same belief and with budget equal to the
sum of the budgets of all the agents.

For the set theoretic belief case, we assume that the user aims to maximize the worst
case profit where the profit is taken over all distributions in his belief set. Again, we
characterized the user’s behavior geometrically by showing the user’s optimal strategy
is a Bregman projection of the current price vector onto the belief set.
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