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Abstract

We construct a budget-balanced wagering mechanism that flexibly extracts infor-

mation about event probabilities, as well as the mean, median and other statistics from

a group of individuals who have private beliefs that are immutable to the actions of

others. We show how our mechanism, called Brier betting mechanism, arises naturally

from a modified parimutuel betting market. We prove that it is essentially the unique

wagering mechanism that is anonymous, proportional, sybilproof, and homogeneous. Al-

though the Brier betting mechanism is designed for individuals with immutable beliefs,

we show that it continues to elicit information well even in a Bayesian setting. While

a slight bias away from truthful reporting may arise under asymmetric information in

the Bayesian setting, through the correlation between the total wealth wagered and the

event outcome, this bias is driven towards zero as the fraction of any individual’s wealth

compared to the group’s converges to zero.
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1 Introduction

Consider a society of individuals endowed with heterogeneous information—and thus pri-

vate beliefs—about an uncertain event, for example, a future sporting event, a stock market

event, or the success of a project. Eliciting and fully aggregating their information in a

market are theoretically possible under certain conditions (Lucas, 1972; Grossman, 1981;

Ostrovsky, 2012) and work in simple laboratory tests (Plott and Sunder, 1982), but can

fail in more realistic scenarios (Plott and Sunder, 1988; Forsythe and Lundholm, 1990).

Many market mechanisms, including continuous double auctions (Wolfers and Zitzewitz,

2004), parimutuel market (Ali, 1977; Thaler and Ziemba, 1988; Hurley and McDonough,

1995; Plott et al., 2003; Ottaviani and Sørensen, 2009), and market scoring rules (Hanson,

2003, 2007), have been used for information elicitation and aggregation. In theory, the

aggregation, even partial aggregation, of information in a market often relies on the as-

sumption that participants act as Bayesian agents and rationally update their beliefs when

observing others’ actions. The frequent violation of this assumption arguably contributes

to the observed markets’ failure in aggregating information in experiments and real-world

scenarios.

On the other hand, some simple opinion pooling methods (French, 1985; Genest and

Zidek, 1986; Clemen and Winkler, 1999) have been shown to perform well in producing

an aggregated forecast in practice. For example, taking an average or a weighted average

of private beliefs—in essence treating individual information sources as independent—is a

robust and practical alternative, with accuracy improving in the number and diversity of

individuals (Forsythe et al., 1992; Jacobs, 1995; Surowiecki, 2004; Chen et al., 2005; Dani

et al., 2006; Reeves and Pennock, 2007; Page, 2007). These methods post-process individual

beliefs that have already been elicited. To allow a wide arrange of aggregation methods, it

is desirable to elicit private information from individuals as accurately as possible. Proper

scoring rules (Brier, 1950; Savage, 1971; Winkler et al., 1996; Gneiting and Raftery, 2007)

and shared scoring rules (Kilgour and Gerchak, 2004) have been designed for this purpose.

They are incentive compatible for agents who have private beliefs that are immutable to the

actions of others (i.e. who do not perform Bayesian updating), meaning they reward agents

maximally for reporting their true beliefs. However, proper scoring rules are not budget

balanced ; they require an outside subsidy. While shared scoring rules are budget balanced,

the mechanism is not sybilproof : Individuals can benefit from submitting several reports

under different pseudonyms.

Focusing on eliciting private information from individuals, we propose a new mecha-

nism, the Brier betting mechanism, that has a number of desirable properties, including the

three above. The mechanism proceeds in two stages. First, individuals wager money on
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event probabilities. Once all bets are collected and the event outcome is known, the total

amount wagered is redistributed among the bets. The fractions of the total allocated to bets

are expressed as quadratic functions of the outcome realization and individual predictions

(essentially a Brier score), in which each term is weighted by the fraction of money invested

by each participant.

The Brier betting mechanism is incentive compatible for individuals with immutable

beliefs, budget balanced and:

• Proportional: An individual’s expected payoff increases as his or her absolute accu-

racy increases, and decreases as the accuracy of other forecasts increases.

• Anonymous: The market does not discriminate among participants.

• Sybilproof: Market outputs do not depend on whether participants divide their

wager among one or several bets.

• Homogeneous: Market outputs depend solely on the fraction each player invests

relative to the total amount invested.

A natural question to ask is whether there are other mechanisms satisfying these proper-

ties. We show that the answer is no: The Brier betting mechanism is essentially the only

mechanism that fulfills all these properties.

Our mechanism is also ex-ante individually rational (IR)—agents who make correct

predictions have a nonnegative expected value for participating—but it is not ex-post IR. In

a budget-balanced mechanism, if one agent can gain, another must risk losing. A bounded

scoring rule with sufficient subsidy can be ex-post IR, ensuring no participant can ever

lose. But an ex-post IR mechanism rewards uninformed and even misinformed experts,

encourages sybils, and isn’t practical for large, open-membership groups.

The Brier betting mechanism is designed for individuals with immutable beliefs and

hence may have robust performance in some real-world scenarios where individuals are

confident about their beliefs and do not vary them upon seeing others’ actions. However,

even if individuals are indeed rational Bayesian agents, we show that our mechanism can

still perform well in eliciting private information. In a Bayesian game setting, individuals’

reports may slightly deviate away from their true beliefs. The deviation depends on the

correlation between the total wealth wagered and the event outcome and is driven towards

zero as the fraction of any individual’s wealth compared to the group’s converges to zero.

The paper proceeds as follows. Section 2 describes related work. Section 3 introduces the

Brier betting mechanism, and shows it satisfies a number of desirable properties. Section 4

shows how the Brier betting mechanism can be constructed heuristically from the horse-

race parimutuel markets. Section 5 takes an axiomatic approach. It presents the Brier
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betting mechanism as a member of a large class of mechanisms in which individuals can

put wagers on probabilistic predictions, and shows that the Brier betting mechanism is the

only member of the class that satisfies all the properties. Section 6 analyzes our mechanism

from a game-theoretic perspective. Section 7 discusses an alternative interpretation of the

Brier mechanism in the context of eliciting expert advice, as well as an extension for the

extraction of general statistics. Finally, Section 8 concludes.

2 Background and Related Work

The Brier betting mechanism combines features of the horse-race parimutuel market and

the scoring rule elicitation method. As in the scoring rule method, market participants

announce probabilistic predictions and get rewarded accordingly. As in the parimutuel

market, participants specify their degree of participation, that is, their stake, in the mar-

ket. Johnstone (2007) explores a similar combination but the resulting mechanism is not

incentive compatible.

Parimutuel markets are commonly used to wager on sports including horse racing and jai

alai. Players decide how much to wager on a categorical outcome of an uncertain variable:

No probability assessment is given. After the actual outcome materializes, the pool of money

is divided among the winning players who chose the correct outcome in proportion of the

amount they bet. Parimutuel betting platforms have be thoroughly studied (Eisenberg

and Gale, 1959; Ali, 1977; Quandt, 1986; Thaler and Ziemba, 1988; Watanabe et al., 1994;

Hurley and McDonough, 1995; Takahiro, 1997; Plott et al., 2003; Ottaviani and Sørensen,

2005, 2008, 2009; Koessler et al., 2008).

Parimutuel markets enable players to confront their predictions, but they do so in a

quite restricted sense. For one thing, the parimutuel game is complex. The action best

played for a given subjective belief depends on the action chosen by other players: There

are generally no dominant strategies (Ali, 1977). Even in simple Bayesian game theoretic

settings that distribute binary signals uniformly across players, multiple non-trivial equi-

libria arise (Watanabe et al., 1994; Koessler et al., 2008). Additionally, the action space

can be too coarse for separating equilibria to exist. If the signal space is dense enough, dif-

ferent posteriors may yield the same equilibrium strategies (Ottaviani and Sørensen, 2009,

2010). This impedes both information revelation and incentives: Better information may

not generate better payoffs, and some information is kept private.

Scoring rules offer an alternative technique to eliciting forecasts. Scoring rules assign

scores to a probabilistic forecast as a function of the outcome realization. When the scoring

rule is proper, an individual paid according to the scoring rule maximizes her expected

earnings when telling the truth (Brier, 1950; Savage, 1971; Winkler et al., 1996; Gneiting and
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Raftery, 2007). The method elicits subjective probabilities separately for each individual,

but requires an external subsidy. In contrast, in a market structure, the less informed

participants sponsor the more informed ones. Kilgour and Gerchak (2004) extend the

scoring rule method to a group of forecasters. With these competitive scoring rules, each

group member is evaluated according to their own score, minus the average score of the

other members. Competitive scoring rules do not need an external subsidy but require

equal participation from all group members and encourage pseudonyms. They also require

that all participants be entitled to the same liability.

Our mechanism also relates to prediction markets. In these markets, participants trade

on event-contingent securities, for example a contract that pays off $1 if the Red Sox win the

game against the Yankees, and zero if they lose (Wolfers and Zitzewitz, 2004). Prediction

markets induce aggregate forecasts through market prices. They are fundamentally dy-

namic: Traders may take actions at different points in time. They observe price movements

and update their beliefs. This dynamic structure enables the aggregation of private beliefs,

but it may also induce strategic traders to delay the revelation of private information, or

to manipulate the market and propagate false beliefs (Chen et al., 2009; Lallour, 2011;

Ostrovsky, 2012). As in horse-race parimutuel markets, these prediction markets combine

participation and prediction together in a single dimension. Consequently, an informed

trader may lack the wealth necessary to move the market, which prevents the release of pri-

vate information. Symmetrically, if a trader has a belief close to the current market price,

there is little or no incentive to participate. Additionally, many prediction markets are

prone to the thin-market problem: With few traders, one market side may not find match-

ing orders, hindering price discovery (Milgrom and Stokey, 1982). In contrast this paper

focuses on static mechanisms that elicit individual predictions, and allows participants to

decide on a prediction and participation level independently.

3 Brier Betting Mechanism

In this section we introduce a betting mechanism based on the Brier score, also known as

the quadratic score or squared loss. Consider a binary outcome, given by a random variable

X taking values in {0, 1}. X is interpreted as the indicator variable of a binary event

E, such as the democrats winning the next presidential elections, or an economic growth

greater than 3% the next year. The event is uncertain, let p be the actual probability that E

occurs.1 All expectations are with respect to the true probability p unless otherwise noted.

1It is common in the forecasting literature to assume outcomes are drawn at random from some true,
objective probability distribution (Dawid, 1982; Foster and Vohra, 1998; Olszewski and Sandroni, 2008).
One can also interpret the probability p as an immutable subjective probability with respect to which an
individual seeks to maximize her expected payoff, as in Eisenberg and Gale (1959) and Ali (1977) who endow
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The Brier betting mechanism involves a group of n individuals, or players, indexed

1, . . . , n, who wager money on their assessment of the probability of E. It proceeds in two

stages:

• In a first stage, every player i places a bet. The bet consists of a wager wi ≥ 0 and a

probabilistic estimate pi ∈ [0, 1] for event E. Bets are submitted simultaneously.

• In a second stage, the event outcome is publicly observed. Denote by x the realization

of X. Each player i receives a fraction of the total amount wagered, based on the

Brier score s(q, x) = 1− (x− q)2, according to the formula:

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+
wi
W

s(pi, x)−
∑
j

wj
W
s(pj , x)

 , (1)

where W =
∑

j wj is the total amount wagered.

The (net) payoff for player i is therefore Wπi − wi. Note that the shares sum to one and

are nonnegative.

Let us briefly examine the form Equation (1), which is discussed in more detail in

Section 4. The first term, wi/W , is the share of the collected wealth W contributed by

player i. The second term determines whether player i will receive a smaller or larger share

than what she initially contributed by comparing her score with the weighted average of

the scores of the other players. It is easy to show that this is equivalent to

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+
wi
W

∑
j 6=i

wj
W

(
(pj − x)2 − (pi − x)2

)
=
wi
W

+ 2
wi
W

∑
j 6=i

wj
W

(pj − pi)
(
pi + pj

2
− x
)
.

This formulation offers a natural interpretation of the mechanism in terms of monetary

transfer between players. The output of the mechanism corresponds to each player i trans-

ferring a fraction

wj
W

(
(pi − x)2 − (pj − x)2

)
= 2

wj
W

(pi − pj)
(
pi + pj

2
− x
)

(2)

of her wager to player j. If the fraction (2) is negative, the transfer is from player j to player

i. Hence, for any given action profile (p1, w1), . . . , (pn, wn), in expectation when x = 1 with

players with heterogeneous prior beliefs. We examine the case of common prior belief in Section 6.

6



probability p, player i gives away a fraction

wj
W

(
(pi − p)2 − (pj − p)2

)
= 2

wj
W

(pi − pj)
(
pi + pj

2
− p
)

of her wager to player j. In expectation, player i receives money from player j if and

only if |pi − p| < |pj − p|. In other words, player i receives money from player j if and

only if she announces a better prediction, in the sense that the absolute difference between

the prediction and the truth is lower. Furthermore, her share is proportional to both the

extent of the disagreement |pi− pj | between the two players, and the quality of the average

prediction of the two players, represented by the absolute difference |(pi + pj)/2− p|.
Observing that the expected share of player i is

wi
W

+
wi
W

∑
j 6=i

wj
W

(
(pj − p)2 − (pi − p)2

)
we can establish a list of properties that the Brier betting mechanism satisfies:

(1) The mechanism is symmetric: For every permutation σ over {1, . . . , n},

πσ−1(i)((pσ(1), wσ(1)), . . . , (pσ(n), wσ(n)), x) = πi((p1, w1), . . . , (pn, wn), x) .

for every x, i, and every action profile (p1, w1), . . . , (pn, wn).

(2) The expected share of player i increases as |pi − p| decreases. That is, for all i, and all

(p1, w1), . . . , (pn, wn), the value of

E[πi((p1, w1), . . . , (pn, wn), X)]

increases as |pi − p| decreases.

(3) The expected share of player i decreases as |pj − p| decreases, for every other player j.

That is, for all i, j 6= i, all (p1, w1), . . . , (pn, wn), the value of

E[πi((p1, w1), . . . , (pn, wn), X)]

decreases as |pj − p| decreases.

(4) If two or more players make identical forecasts, the mechanism output for everyone else

depends on the identical forecasters wagers only through the sum of the wagers of these

identical forecasters, but does not depend on each wager individually.
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(5) Payoffs are homogeneous in that the share to every player remains unchanged when all

the players multiply their wager by the same factor.

Let us briefly discuss the meaning of these properties. Property (1) states that the

mechanism does not discriminate between players, in that the payoffs do not depend on

the players’ identities. Property (2) states that better predictions yield better payoffs,

while property (3) states that a player’s payoff decreases as another player makes better

predictions, as can be expected of any competitive mechanism. In electronic platforms,

it is important to prevent players from manipulating identities. Property (4) fulfill this

requirements in that there is no incentive for a player to create multiple fake identities:

Outputs do not depend on whether participants divide their wager among one or several

bets. Finally, property (5) states that the share allocated to each player depends solely on

the fraction each player invests relative to the total amount invested. In other words, the

share to every player does not depend on the currency being used.

In our mechanism the wager determines a player’s stake or risk exposure. Both net

payoffs and expected net payoffs are monotone in the player’s wager. If a player loses

money (in expectation), her (expected) loss increases with the amount of her wager. If

however a player earns money (in expectation), her (expected) gain also increases with the

amount of her wager. While a player’s loss can never exceed her wager, a player’s gain

never exceeds her wager either. By increasing her wager, a player can potentially earn a

larger payoff but it comes at the risk of a greater loss.

Note that in our mechanism, the quality of a prediction is measured with respect to

the absolute difference between forecasted probabilities and actual ones. It is a direct

consequence of the use of the Brier score. Such measure of prediction quality is suggested

by Friedman (1983) or Nau (1985), among others. It implies that the payoff is symmetric in

forecast errors since forecasts p+ε and p−εmust have the same payoff. Section 7 expands the

mechanism to general scoring rules and demonstrates that the above properties continue to

hold with weaker analogs for properties (2) and (3), thereby allowing for different measures

of prediction quality.

In Section 5, we show that, subject to a smoothing condition, the Brier betting mecha-

nism is essentially the only mechanism that satisfies (1)–(5). First, we build some intuition

for the mechanism.

4 Construction of the Brier Betting Mechanism

The Brier betting mechanism can be obtained by extending the standard horse-race parimutuel

betting markets. In the present context, the horse-race parimutuel market is described as

follows:
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• In a first stage, every player i = 1, . . . , n submits a bet. The bet consists of a wager

wi ≥ 0 and a prediction xi of the outcome. That is, xi = 1 to predict that E occurs

and xi = 0 to predict that E does not occur. Bets are submitted simultaneously.

• In a second stage, the realization x is publicly observed. Players whose prediction is

wrong lose their entire wager. Players who predict the outcome correctly share the

total amount wagered. Winners get an amount proportional to their own wager.

The (net) payoff to player i is therefore

si
wi∑
j sjwj

∑
j

wj

− wi , (3)

where si = 1 if player i is correct (that is, if xi = x) and xi = 0 otherwise.

Following Eisenberg and Gale (1959), Norvig (1967) and Ali (1977), suppose that players

have heterogeneous prior beliefs. That is, players hold immutable subjective beliefs on

outcome probabilities, and seek to maximize their expected payoffs with respect to these

beliefs. Even in this simple configuration, the parimutuel betting game lacks dominant

strategies: A player’s optimal action typically depends on the actions of the other players.

To illustrate this point, consider the choice of a single player i, who must decide whether

to place a small bet wi on outcome 0 or outcome 1. Let W0 be the total amount wagered

on outcome 0 by other players, and W1 be the total amount wagered by other players on

outcome 1. From Equation 3, we can see that if a player i believes that outcome 1 occurs

with probability pi, she is better off putting her wager wi on outcome 1 if

pi
wi

W1 + wi
> (1− pi)

wi
W0 + wi

,

or
pi

1− pi
>
W1 + wi
W0 + wi

.

Therefore her optimal prediction depends on the values W0 and W1, which are unknown at

the time she places her bet.

To get around this problem, we modify the structure of the payoffs to ensure that a

player’s optimal prediction depends solely on her subjective probability. In particular, it is

independent of her own wager, and is independent of the predictions and wagers of the other

players. The lack of dominant strategies owes to the term
∑

j sjwj in Equation 3, which is

the total wager of the winners. It appears as a denominator which introduces a non-linearity

in the payoffs. To restore linearity, we multiply the net payoffs by
∑

j sjwj/
∑

j wj , scaling
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down the amount of money transferred. The net payoff for player i becomes

wi

(
si −

∑
j sjwj∑
j wj

)
. (4)

Note that payoffs remain bounded below by −wi. In this transformed redistribution rule,

no matter how much she decides to wager, a player is always better off predicting the most

likely outcome according to her own belief, independently of the actions of others. However

the space of possible predictions remains too coarse, impeding the full revelation of private

beliefs. For example, a player who believes that there is a 60% chance event E will occur

announces the same prediction she would announce if she instead believed there was a 90%

chance.

To overcome the limitation, in a second step we extend the space of the possible pre-

dictions. We now allow players to announce outcome probabilities. Specifically, player i’s

prediction is an estimate pi of the probability that E occurs. Players can still predict an

outcome if they wish, by announcing probabilities 0 or 1, but they can now express uncer-

tainty as part of the bet. In the payoffs given by (3) and (4), the variable si is essentially

a measure of performance. The greater the value si, the greater the payoff of player i. In

the original parimutuel market, si is restricted to values 0 and 1. This dichotomy reflects

the idea that a player is either entirely correct or completely wrong. As we now allow for a

continuum of predictions, it is natural to also measure performance on a continuum: The

more precise the forecast, the greater the performance.

Scoring rules provide a classic measure of performance for probabilistic predictions. A

scoring rule s assigns a score s(q, x) as a function of a probabilistic forecast q ∈ [0, 1] and the

realized outcome x = 0, 1. Accurate forecasts match empirical probabilities. Proper scoring

rules ensure that the empirical average score is maximized under this condition. A scoring

rule is (strictly) proper when the expected score, under the true probability p, is (strictly)

maximized when q = p. Proper scoring rules and their constructions have been thoroughly

studied. McCarthy (1956), Shuford et al. (1966), Hendrickson and Buehler (1971), Savage

(1971), Friedman (1983), and Schervish (1989) offer various characterizations of proper and

strictly proper scoring rules. Gneiting and Raftery (2007) provide a summary of the results.

No matter the amount she wagers, and no matter the actions of the other players, player

i maximizes the expectation of her gains (as in Equation (4)) by maximizing the expected

value of si, according to her subjective beliefs. Therefore, if we substitute for si in Equation

(4) any proper scoring rule taking values in [0, 1], player i optimally chooses to report her
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true subjective probability. After substitution, the net payoff for player i becomes

wi

[
s(pi, x)−

∑
j s(pj , x)wj∑

j wj

]
.

While we could, in principle, use any proper scoring rule, the Brier score is a simple and

widely used strictly proper scoring rule that satisfies several nice properties. It is defined

in this context as s(q, x) = 1− (q − x)2. Unlike any other scoring rule, the Brier score has

the property that, the closer the forecast is to the true probability (in absolute difference),

the greater the expected score will be. Section 5 investigates this property in greater detail.

Plugging in the Brier score, the net payoff for agent i is

wi

[
−(pi − x)2 +

∑
j(pj − x)2wj∑

j wj

]
,

which can be rewritten as ∑
j 6=i

wiwj
W

((pj − x)2 − (pi − x)2) ,

where W =
∑

j wj . Adding the wager wi of player i and dividing by W gives the share

assigned to player i.

5 Axiomatic Approach

The Brier betting mechanism is part of a larger collection of mechanisms in which agents

wager money on probabilistic predictions. We refer to these as wagering mechanisms.

Specifically, a wagering mechanism is defined by a redistribution rule π. The rule speci-

fies how the total amount wagered is divided among the players, for any number of players.

The mechanism operates in two stages. In stage 1, every player i bets an amount wi on a

prediction pi for the probability that E occurs, i.e., the probability that X = 1. In stage 2,

the realization x of X becomes known, and the total amount wagered W is divided among

the players. Player i gets a share πi((p1, w1), . . . , (pn, wn), x) of W . That is, player i receives

a net payoff of Wπi((p1, w1), . . . , (pn, wn), x)−wi. Shares must be nonnegative and sum to

one. We require throughout that every function πi be twice continuously differentiable in

the vector of predictions (p1, . . . , pn).

The main result of this paper shows that, under this requirement, the Brier betting

mechanism is essentially the only wagering mechanism that satisfies the properties (1)–(5)

enumerated in Section 3. We lay out the proof of this theorem in several steps. First, we
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show that the Brier score is the only scoring rule to satisfy the property that the expected

score decreases in the absolute difference between the report and the true event probability.

Next, we use this feature to provide a uniqueness result for sharing rules that divide a fixed

amount of money among a set of forecasters, a result of independent interest. Finally, we

build on this result to prove our main theorem.

Theorem 1. Consider a wagering mechanism defined by the redistribution rule (π1, . . . , πn)

in which every function πi is twice continuously differentiable. The mechanism satisfies the

list of desiderata (1)–(5) enumerated in Section 3 if and only if

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(
(pj − x)2 − (pi − x)2

)
for some constant κ ∈ [0, 1].

The presence of the quadratic term is due to the properties (2) and (3). In Section 7

we claim that under weaker properties, the quadratic term can be replaced by any proper

scoring rule. Note the introduction of the constant κ, absent from the original formulation

of the payoffs in Equation (1). Properties (1)–(5) indeed hold for all κ ∈ [0, 1], however it

is natural to set κ = 1. For any other choice of κ players always get to keep some fixed

fraction of their own wager, even in the worst circumstances. Choosing κ = 1 ensures

that a player can lose arbitrarily close to her wager in some situations. Also note that

property (5) is useful but not essential to the characterization. The proof we offer in the

following subsections shows that without property (5), the characterization generalizes only

marginally, with κ being then a function of the total amount wagered W . Such a flexibility

is not of particular interest as κ = 1 remains the most natural and desirable choice.

5.1 Characterization of the Brier Score

The quadratic or Brier scoring rules, defined by s(q, x) = −c(q−x)2 +f(x) for an arbitrary

function f and positive constant c, are arguably the best known strictly proper scoring rules

(Brier, 1950). We begin by showing that these scoring rules are the only ones satisfying a

simple monotonicity property: The expected score increases as |p− q| decreases, where p is

the probability assigned to event E or outcome x = 1. The fact that the Brier scoring rules

satisfy this property was shown by Friedman (1983); the result below shows uniqueness. As

most of our analysis requires some smoothness of the functions being used, we prove the

result for continuously differentiable scoring rules, that is, functions s(q, x) continuously

differentiable in q, for every choice of x.

Proposition 1. The Brier scoring rules are the unique scoring rules s(q, x) such that

E[S(q,X)] is strictly decreasing in the absolute difference |q − p|.
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Proof of Proposition 1: We begin by a characterization of all the continuously differentiable

proper scoring rules. We show that s(q, x) is a proper scoring rule if and only if s′(q, x) =

γ(q)(x− q) for some continuously differentiable function γ(·) ≥ 0. Note that this statement

is a direct consequence of the more general Schervish characterization (Schervish, 1989).

For this special case we include a simple proof for completeness.

To show sufficiency, observe that if s′(q, x) = γ(q)(x− q), then

E[s(p,X)]− E[s(q,X)] =

∫ p

q
γ(t)(p− t)dt

which is non-negative when γ(t) ≥ 0.

For necessity, remark that if a scoring rule s(q, x) is proper then q = p maximizes

E[s(q,X)], where the expectation is taken under the true probability p that X = 1. The

first-order condition yields, for all p ∈ (0, 1),

ps′(p, 1) + (1− p)s′(p, 0) = 0 .

Let

γ(q, x) =
s′(q, x)

q − x

whenever q 6∈ {0, 1}. The first-order condition can then be rewritten as

p(p− 1)γ(p, 1) + p(1− p)γ(p, 0) = 0, ∀p ∈ (0, 1) ,

and so γ(p, 1) = γ(p, 0) = γ(p) for some function γ(·) on (0, 1). The function γ(·) can be

extended to the full interval [0, 1] by continuity. The fact that γ(·) ≥ 0 follows from the

inequality

E[s(p,X)]− E[s(q,X)] =

∫ p

q
γ(t)(p− t)dt ≥ 0 , ∀p, q ∈ [0, 1] .

We now build on this result to show that E[s(q,X)] is strictly decreasing in |q − p| if

and only if s′(q, x) = γ(x− q) for some constant γ > 0.

For sufficiency, observe that if s′(q, x) = γ(x − q), then s(q, x) = −γ(x − q)2/2 + ρ(x)

for some function ρ. Hence E[s(q,X)]− E[s(p,X)] = γ(p− q)2/2, and the result follows.

We prove necessity starting from the equality

E[s(p− δ,X)] = E[s(p+ δ,X)] , (5)

for all p and δ such that p+ δ and p− δ are within the range [0, 1], equality that is implied
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by the monotonicity condition. We already know that

s(q, x) = s(0, x) +

∫ q

0
γ(t)(x− t)dt .

Substituting this expression of s(q, x) into (5) yields∫ p+δ

p−δ
(p− t)γ(t)dt = 0 , ∀p, δ .

Differentiating with respect to δ, we get

(p− (p+ δ))γ(p+ δ) + (p− (p− δ))γ(p− δ) = −δγ(p+ δ) + δγ(p− δ) = 0 ,

and so γ(p + δ) = γ(p − δ). This equality is valid whenever 0 < p − δ < p + δ < 1. By

continuity of γ(·), we conclude that γ(p) = γ for all p, that is, γ is constant. That γ is

positive follows immediately.

5.2 A Uniqueness Result for Sharing Rules

We next provide a uniqueness result for mechanisms that divide a fixed amount of money

M among a set of forecasters. These mechanisms can be interpreted as scoring rules that

apply to multiple forecasters, with the constraint that scores must be nonnegative and sum

to a constant M .

As in the preceding sections, X denotes the indicator variable of an event E and p the

probability that E occurs. There are n forecasters. In the first stage, each forecaster i

reports her probability assessment pi. In the second stage, after observing the realization x

of X, each forecaster i gets a share πi(p1, . . . , pn, x) of the total amount M . A sharing rule

is given by the vector of shares (π1, . . . , πn). Sharing rules are, by definition, nonnegative,

and such that the total shares π1 + · · ·+ πn sum to one. We focus the analysis on sharing

rules that are twice continuously differentiable with respect to the vector of probability

inputs (p1, . . . , pn).

We seek sharing rules that satisfy properties analogous to (1)–(3) from Section 3. In

the context of sharing rules, these properties are expressed as follows:

(a) The sharing rule should be symmetric, i.e., for every permutation σ of the forecasters,

πσ−1(i)(pσ(1), . . . , pσ(n), x) = πi(p1, . . . , pn, x) .

(b) For all i and j 6= i, E[πi(p1, . . . , pn, X)] should be increasing as |pi − p| decreases: A

forecaster gets a larger share as her report gets closer to the truth.
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(c) For all i, E[πi(p1, . . . , pn, X)] should be decreasing as |pj − p| decreases: A forecaster

gets a smaller share as someone else’s report gets closer to the truth.

Proposition 2. The sharing rule (π1, . . . , πn) defined by

πi(p1, . . . , pn, x) =
1

n
+

α

n− 1

∑
j 6=i

(
(pj − x)2 − (pi − x)2

)
for α ∈ [0, 1/n] satisfies properties (a)–(c). Furthermore, sharing rules of this form are the

only twice continuously differentiable sharing rules that satisfy them all.

Proof of Proposition 2: Sufficiency is direct, observing that

E[πi(p1, . . . , pi−1, p, pi+1, . . . , pn, X)]− E[πi(p1, . . . , pn, X)] = α|pi − p|2 ,

and similarly

E[πi(p1, . . . , pj−1, p, pj+1, . . . , pn, X)]− E[πi(p1, . . . , pn, X)] = − α

n− 1
|pj − p|2 .

The key to proving necessity is the following lemma:

Lemma 1. If πi is a twice continuously differentiable sharing rule that satisfies conditions

(2) and (3) above, then there exist twice continuously differentiable functions πji such that

πi(p1, . . . , pn, x) = πii(pi, x) +
∑
j 6=i

πji (pj , x) .

Proof of Lemma 1: The proof makes use of the following lemma, whose proof is relegated

to the Appendix.

Lemma 2. If f : (a, b)n 7→ R is twice continuously differentiable, and if

∂2f(x1, . . . , xn)

∂xi∂xj
= 0

for all x1, . . . , xn and all i 6= j, then there exist fi : (a, b) 7→ R, i = 1, . . . , n such that

f(x1, . . . , xn) =
n∑
i=1

fi(xi) .

Let Ep denote the expectation over X when X = 1 with probability p. By property (b),

p = arg max
pi

Ep[πi(p1, . . . , pn, X)] , (6)
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and by property (c), for all j 6= i,

p = arg min
pi

Ep[πj(p1, . . . , pn, X)] . (7)

The first-order condition in (6) and (7) yields, for all k and all i,

Epi

[
∂πk(p1, . . . , pn, X)

∂pi

]
= 0 .

As the equality remains true for all values of pj , we can differentiate a second time and get,

for all k and all i, j, i 6= j,

Epi

[
∂2πk(p1, . . . , pn, X)

∂pi∂pj

]
= 0 .

Note that as πi is twice continuously differentiable function, ∂2πi/∂pi∂pj = ∂2πi/∂pj∂pi.

Hence by symmetry we also have

Epj

[
∂2πk(p1, . . . , pn, X)

∂pi∂pj

]
= 0 .

Observe that, for any random variable Y that takes value in {yL, yH}, if for any p, q

with p 6= q, the expected value of Y when Y = yH has probability p is the same as the

expected value of Y when Y = yL has probability p, then it must be the case that yL = yH .

Applying this to the two preceding inequalities yields, for all i 6= j, all (p1, . . . , pn) with

pi 6= pj , and all x,
∂2πk(p1, . . . , pn, X)

∂pi∂pj
= 0 .

By continuity, the equality remains true for pi = pj . We conclude by a direct application

of Lemma 2.

We now return to the proof of the proposition. We apply Lemma 1, and write πi =∑
j π

j
i with the functions πji as defined by the Lemma. Using property (b) and applying

Proposition 1, there exist some constants αi > 0 and some functions gii such that, for all i,

πii(pi, x) = −αi(pi − x)2 + gii(x) .

Also, by property (c), and again in application of Proposition 1, there exist some constants

βji > 0 and some functions gji such that, for all i, j with i 6= j,

πji (pi, x) = βji (pj − x)2 + gji (x) .
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These two equalities imply that πi can be re-written under the form

πi(p1, . . . , pn, x) = −αi(pi − x)2 +
∑
j 6=i

βji (pj − x)2 + gi(x)

where gi =
∑

j g
j
i . Fix some forecaster i. Applying property (a), the payoff of forecaster

i when the reports of the other forecasters are permuted should remain the same, which

yields βji = βi for some βi and all j. When can then apply property (a) to forecaster i and

some other forecaster j. When these agents are permuted, the payoffs are permuted as well,

which yields αi = α, βi = β, and gi = g for all i. Hence, for all p1, . . . , pn, and all x,

πi(p1, . . . , pn, x) = −α(pi − x)2 +
∑
j 6=i

β(pj − x)2 + g(x) .

The last step makes use of the fact that the forecasters’ shares sum to one:∑
i

−α(pi − x)2 +
∑
i

∑
j 6=i

β(pj − x)2 + ng(x) = 1 .

As the equality remains true for every value of p1, by we can differentiate each side of the

equality with respect to p1 to get

−2α(p1 − x) + 2(n− 1)β(p1 − x) = 0 ,

which gives β = α/(n− 1) and so 0 + ng(x) = 1, hence g(x) = 1/n.

In summary,

πi(p1, . . . , pn, x) =
1

n
+

α

n− 1

∑
j 6=i

[
(pj − x)2 − (pi − x)2

]
.

Property (b) implies α ≥ 0. As shares must remain nonnegative, α ≤ 1/n.

To prove our main theorem, we make use of Proposition 2 in its full generality. However,

when using sharing rules as an independent mechanism to reward a group of forecasters, it

is natural to take α = 1, so as to get the additional property (d):

(d) For all i, there exists a profile of reports p1, . . . , pn and a realization x such that the

share of forecaster i is zero: πi(p1, . . . , pn, x) = 0.

We have the following immediate corollary:
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Corollary 1. The sharing rule (π1, . . . , πn) defined by

πi(p1, . . . , pn, x) =
1

n
+

1

n(n− 1)

∑
j 6=i

(
(pj − x)2 − (pi − x)2

)
satisfies properties (a)–(d). Furthermore, it is the only twice continuously differentiable

sharing rule that satisfies them all.

5.3 Return to Wagering Mechanisms

We now return our attention to wagering mechanisms and provide the proof for the unique-

ness of the Brier betting mechanism.

Proof of Theorem 1: As we argued in Section 3, sufficiency is immediate and follows from

the observation that

E[πi((p1, w1), . . . , (pn, wn), X)] =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(
(pj − p)2 − (pi − p)2

)
.

To show necessity, we make a parallel between three different scenarios: One in which

all wagers are identical, one in which wagers may vary but remain multiple of a base wager

ε, and, finally, the real setting of interest in which wagers are arbitrary. The rules that

determine the payoffs of the first setting are derived from Proposition 2. The payoffs of the

second setting are then obtained using property (4) of Section 3. Finally, we get the payoffs

of the third setting by viewing this general setting as a limit case of the second setting.

Let (p1, . . . , pn) be a profile of n predictions.

Setting 1: In the first setting, there are N players divided into n groups with ki members

each,
∑

j kj = N . Each player of the group i announces the same prediction pi, and all

players in all groups wager the same amount ε. The total amount of money wagered is then

W = Nε. Index players by capital letters I, J and denote by pI the prediction of player I.

The properties (1), (2), and (3) applied to this first setting imply, by proposition 2, that

player I should get a share

1

N
+

α

N − 1

∑
J 6=I

[(qJ − x)2 − (qI − x)2]

of the total wager W for some α ∈ [0, 1/N ]. Note that α may depend on N and ε. In what

follows, we write the dependence explicitly as α(N, ε).

Setting 2: Now consider a second setting with only n players. Each player i chooses

prediction pi (as above) and a wager wi = kiε for the same values of ki used in setting 1.
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The total amount of money wagered in this setting is W = Nε, the same as in setting 1.

Furthermore, each player i in this setting announces the same prediction as every member

of group i in setting 1, and wagers an amount that is the sum of the wagers of all members

of this group. Therefore, by application of property (4), the share that player i receives in

this setting must equal the total share that group i receives in setting 1, which is

ki
N

+
α(N, ε)ki
N − 1

∑
j 6=i

kj [(qj − x)2 − (qi − x)2] .

This expression can be rewritten as

wi
W

+ β(N, ε)
wi
W

∑
j 6=i

wj
W

[(qj − x)2 − (qi − x)2] (8)

where we define

β(N, ε) =
N2

N − 1
α(N, ε) .

By property (5), the shares do not depend on ε so that β(N, ε) is only a function of N , and

we write β(N, ε) = β(N).

Setting 3: In the final step, we return to the initial problem of computing shares for

players with unrestricted wagers. This third setting can be seen as a limit case of the

second setting. Each player i wagers any amount wi > 0 (the case wi = 0 can be obtained

by continuity) and predicts pi. We compute the share of player i as follows.

Let εt = 1/t and for each player i, consider any sequence of positive integers {kti}t=1,2,...

such that kti/t → wi as t → +∞. Let N t =
∑

i k
t
i . Each particular value of t corresponds

to setting 2 with the corresponding values ε = εt and ki = kti . Naturally N t → +∞ as

t→ +∞. By (8), and the continuity assumption of the sharing rule, the limit of

wi
W

+ β(N t)
wi
W

∑
j 6=i

wj
W

[(qj − x)2 − (qi − x)2]

as t → ∞ exists and equals the share of player i in this third setting. Hence the limit

limN→∞ β(N) exists, and we conclude the proof by taking κ = limN→∞ β(N). That κ ∈
[0, 1] follows from the necessity to have nonnegative shares and by property (2).

6 Bayesian Analysis

Our axiomatic analysis abstracts away the formation of private beliefs. This is a non-issue

as long as a player’s subjective probability is not affected by the actions of other players.

This can be the case if players hold different prior beliefs, a setting considered in Eisenberg
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and Gale (1959) and Ali (1977), or if players are irrational and over-confident about their

own prediction.

The purpose of the current section is to illustrate the functioning of our mechanism

when players share a common prior belief, as in Koessler et al. (2008) and Ottaviani and

Sørensen (2009, 2010). In this new configuration players can be influenced by others. Per-

haps surprisingly, in general common prior settings players no longer announce a truthful

prediction. This is true of the Brier betting mechanism, but also of any non-trivial wagering

mechanism. However, in the case of the Brier betting mechanism, we are able to quantify

the bias and show that predictions tend to reflect true personal assessments as the size

of the betting market grows. This asymptotic property is independent of the information

structure being used.

Model. Let (Ω,F , P ) be a probability space, where Ω denotes the set of possible states of

the world and P is a common prior. All expectations of this section are taken with respect

to P . There are n risk-neutral players. Player i holds private information on the true state

of the world, which leads to heterogenous private beliefs about the likelihood of the event.

As is common, to allow for full generality, we represent this private the information by a

sigma algebra Fi. The set Fi can be interpreted as the collection of all the events that

player i observes privately. For example, if player i observes a real-valued signal Si, then

the set Fi consists in the sigma algebra generated by the family of events {Si ∈ [a, b]},
where [a, b] is any interval.

Players are offered to bet in the Brier betting mechanism. Denote by E the event of

interest. A player’s prediction consists in a probability assessment that E occurs. Denote

by X the indicator variable of E. By convention, each player may decide not to participate

by wagering a zero amount. The mechanism then disregards the prediction. However if she

decides to participate, the player must wager an amount within the range [WL,WH ], where

WL and WH are mechanism parameters that specify respectively the lowest and highest

amount players can wager. Imposing lower and upper bounds on wagers is common in

practice. Limiting the gains and losses makes our analysis tractable: It permits to assume

risk neutrality, an hypothesis empirically validated in the context of horse-race parimutuel

betting (Ali, 1977). To induce voluntary participation, and circumvent No-Trade Theorems

(Milgrom and Stokey, 1982), we treat the betting game as a consumption good. Players

derive a positive utility from betting, owing for example to entertainment value. If she

participates, player i gets, in addition to her payoff, a utility amount equivalent to Ui

dollars.
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Equilibrium Analysis. In this setting a natural solution concept is that of Bayes-Nash

equilibrium. A pure strategy for player i is a pair of random variables (pi, wi), where pi :

Ω 7→ [0, 1] gives a prediction—the assessment of event E’s likelihood—and wi : Ω 7→ {0} ∪
[WL,WH ] returns the wager. Both functions depend on the state and are required to be

Fi-measurable, 2 so that both the prediction and the wager of player i depend only on her

private information. A mixed strategy is a distribution over pure strategies. For simplicity

of exposition we focus on pure strategy equilibria; the analysis extends directly to equilibria

in mixed-strategy. A strategy profile {(pi, wi)}ni=1 is an (ex-interim) Bayes-Nash equilibrium

when, for every player i, and every alternative strategy (p̃i, w̃i) of that player,

E

[∑
j 6=i

wiwj
wi +W−i

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

+ Ui1{wi > 0} ≥

E

[∑
j 6=i

w̃iwj
w̃i +W−i

(
(pj −X)2 − (p̃i −X)2

) ∣∣∣∣ Fi
]

+ Ui1{w̃i > 0} , (9)

where W−i =
∑

j 6=iwj is the total amount other players wager.

Rearranging the terms and using W =
∑

j wj as the total wager, we get that

E

[∑
j 6=i

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

=

E

∑
j 6=i

wiwj
W

(pj −X)2
∣∣∣∣ Fi

− E

[
wi

(
1− wi

W

)
(pi −X)2

∣∣∣∣ Fi] ,

so that at equilibrium pi minimizes the last term

E

[
wi

(
1− wi

W

)
(pi −X)2

∣∣∣∣ Fi] .

The first order condition yields

E

[
wi

(
1− wi

W

)
(pi −X)

∣∣∣∣ Fi] = 0 .

Hence, at equilibrium, the prediction of player i is

pi =
E[(1− wi/W )X | Fi]

1− E[wi/W | Fi]
= E[X | Fi]−

Cov(wi/W,X | Fi)
1− E[wi/W | Fi]

,

2Recall that a function is G-measurable when observing the occurrence or nonoccurrence of each event
of G is enough to fully determine the value of that function.
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where Cov(wi/W,X | Fi) denotes the covariance between wi/W and X conditionally on

information Fi. It is easily verified that 0 ≤ pi ≤ 1.

Therefore, at equilibrium, each participating player i announces a prediction that is the

sum of her true probability assessment E[X | Fi] and a bias

εi = −Cov(wi/W,X | Fi)
1− E[wi/W | Fi]

. (10)

The bias depends only on how the total amount wagered correlates with the outcome.

If participation increases with the occurrence of the event, players tend to overestimate

probabilities. Conversely if the total amount wagered decreases with the occurrence of

the event, players tend to underestimate probabilities. The bias owes to the structure of

the payoffs. A prediction has greater impact on a player’s payoff when the total amount

wagered is large. Depending on the information structure, the total amount wagered may

provide information on the state of the world. Consequently the optimal prediction may

depend on the total amount wagered. As the total amount wagered is uncertain, the optimal

prediction is a weighted average of the predictions that are separately optimal conditionally

on every possible total wager W . Since greater amounts W have stronger impact on a

player’s payoff, the player should put more weight on the predictions optimal for these

amounts, which introduces a bias.

However biases are typically small can often be ignored. As we argue in the two examples

below, they are only noticeable under some cases of asymmetric information. Besides if m

is the number of participants, observing that

|εi| ≤
E[wi/W | Fi]

1− E[wi/W | Fi]
= O(1/m) ,

the bias becomes rapidly negligible as the number of participants grows. Thus predictions

tend to reflect accurately the players’ beliefs in large markets, no matter the underlying

information structure. Note that the problem of biased predictions is intrinsic to all non-

trivial wagering mechanisms. It is due to the budget-balance constraint, which implies

that the same predictions impact payoffs differently for different given wagers of the other

players.

At equilibrium, the wager for player i, wi, maximizes

E

[∑
j 6=i

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Fi
]

+ Ui1{wi > 0} with pi =
E[(1− wi/W )X | Fi]

1− E[wi/W | Fi]

Because the net payoffs from betting are always within the range [−wi, wi], if player i

participates she is always guaranteed utility at least Ui − WL. In particular player i is
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better off participating whenever Ui > WL. If Ui < WL, the player may or may not decide

to participate, depending on how her private information compares to that of others. She

will only participate if she finds herself sufficiently knowledgeable compared to the other

players.

If equilibrium wagers are independent of the state of the world, the monotonicity of

the payoffs discussed in Section 3 implies that each player should wager either 0, WL or

WH . She wagers 0 if she is poorly informed and has low value for participation, she wagers

WL if she is poorly informed and has high value for participation, and she wagers WH if

she is well informed, no matter her value for participation. However in general equilibrium

wagers need not be restricted to these three values. They can lie a priori anywhere in

between the minimum and maximum wagers WL and WH . Indeed, for a given state of the

world, marginal payoffs have the same sign. Hence if a player finds it best to participate,

the optimal wager is either to bet the maximum amount WH , and get a positive wealth

transfer from the other players, or to bet the minimum amount WL and subsidize the other

players. In contrast, when the state of the world is uncertain, the marginal payoffs may

change sign, because the marginal payoffs for the different states of the world need not vary

at the same rate. Therefore conditional on a player’s private information, at a particular

wager w, betting one extra dollar may generate additional gains, while at a wager w′ > w,

betting one extra dollar may cause a loss. Naturally more informed players always wager

more than less informed players, in the sense that, if Fi ⊆ Fj , then wj ≥ wi.

An example with biased predictions. Biased predictions can only appear under asym-

metric information when a player’s participation depends on her private observations. For

instance, when a player can receive good information in some states of the world, say S,

and poor information in others, to the extent that she is willing to participate only when

she receives good information. A large total wager W is then an indicator that the states

of the world S are more likely. At the time bets are being submitted, players do not know

the total wager W . However, conditional on W being large, a player should update her

belief towards higher probabilities for S. As we argued above, predictions conditional on

large W should carry more weight than those conditional on small W . Hence a player

tends to report probabilities under the assumption that S is more likely than her personal

assessment would suggest, causing a bias.

To illustrate our argument, consider a binary outcome X and three conditionally inde-

pendent binary signals S1, S2, S3.
3 The common prior P assigns equal probability to X = 1

and X = 0. There are three players. Every player i privately observes signal Si. Signal S1

is completely uninformative with P (S = 1|X = 1) = P (S = 1|X = 0) = 1/2. Signal S3 is

3In this setting a state of world is simply a joint realization of all the signals and the binary outcome.
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perfectly informative with P (S3 = 1|X = 1) = P (S3 = 0|X = 0) = 1. Finally, signal S2 is

informative in some states and uninformative in some others: P (S2 = 1|X = 1) = 1 but

P (S2 = 1|X = 0) = 1/2. Take WL = 1 and WH = 10 as lower and upper wager limits,

respectively. Let the participation utility for player 1 be U1 > WL (player 1 is here for

entertainment purpose, in effect she subsidizes the market) and for the other two players

U2 = U3 = 0 (other players only play for profit).

We first observe that in a Bayes-Nash equilibrium, the wagers of player 1 and 3 are

respectively w1 = 1 and w3 = 10. Indeed player 1 is always better off participating because

of her high entertainment value. However, since the other two players are more informed,

player 1 is always losing money in equilibrium, and so bets the minimum amount allowed

to minimize her losses. On the contrary player 3 is the best informed of all players. Since

she always knows the true outcome she never loses money, and should wager the maximum

amount to maximize her gains. In equilibrium player 2 takes an action that depends on

how much she knows. If she observes signal S2 = 0, then she knows that X = 0 and is, like

player 3, perfectly informed. She should wager the maximum to get the most she can from

player 1. If however S2 = 1, she is poorly informed. Using the fact that, at equilibrium,

p3 = X, player 2’s expected net incoming transfer conditional on her information S2 = 1 is

therefore

E

[
w2

W

∑
j=1,3

wj
(
(pj −X)2 − (pi −X)2

) ∣∣∣∣∣ S2 = 1

]
≤ w2w1

W
− w2w3

W
· 2

9
< 0 .

No matter how player 1 chooses her prediction, player 2 is guaranteed to lose money on

average when she receives signal S2 = 1, and therefore should abstain from participation.

Hence, in this particular setting, the total wager at equilibrium depends on the true state

of the world.

We now turn our attention to the equilibrium predictions. Player 3 being perfectly

informed, she reports truthfully the probabilities 0 or 1. When player 2 participates she

is perfectly informed and reports truthfully probability 0 or 1 as well. Player 1’s true

assessment of the probability that X = 1 is 50%. However in equilibrium she announces
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the prediction p1 that minimizes her expected loss

P (S2 = 0)E

[
w1

W

∑
j=2,3

wj
(
(pi −X)2 − (pj −X)2

) ∣∣∣∣∣ S2 = 0

]

+ P (S2 = 1)E

[
w1

W

∑
j=2,3

wj
(
(pi −X)2 − (pj −X)2

) ∣∣∣∣∣ S2 = 1

]

= P (S2 = 0) · 20

21
· p21

+ P (S2 = 1) · 10

11

(
P (X = 0|S2 = 1)p21 + P (X = 1|S2 = 1)(1− p1)2

)
,

which yields p1 = 42/85 ≈ 49% < 50%. Therefore in equilibrium player 1 is not truthful,

even though the bias remains small enough for most practical purposes. Indeed when the

total wager W is low player 1’s participation is rewarded less than when W is high. High

wagers indicate a signal S2 = 0. Since the probability of outcome X = 1 conditional on

S2 = 0 is less than when the probability of X = 1 conditioned upon S2 = 1, player 1 should

bias her reports towards lower probabilities.

An example with truthful predictions. In contrast, when the information structure

displays enough symmetry, equilibrium predictions are unbiased. Predictions are truthful

even if the quality of information is heterogeneous across players, as long as it does not

vary within players. Consider for example a setting with n players. As before, X is a

binary outcome and P a common prior that assigns equal probabilities to both outcomes.

Each player i has access to a binary signal Si, where P (Si = 1|X = 1) = P (Si = 0|X =

0) = µi > 1/2. High values µi indicate better information. Without loss of generality we

rank the players in order of increasing knowledge by imposing µ1 ≤ · · · ≤ µn. Signals are

conditionally independent. For simplicity consider Ui > WL, i.e., every player is always

willing to participate, no matter how informed.

We show that there exists an equilibrium in which every player predicts truthfully ac-

cording to her private information; that is, player i’s prediction strategy is pi = P (X = 1|Si).
As predictions are always unbiased in equilibria in which every player wagers independently

of her signal, we seek to construct such an equilibrium.

Players with imprecise signals get positive utility from entertainment value only, but lose

money on average. In effect they subsidize the market and transfer part of their wealth to

the players with precise signals. Hence if such an equilibrium exists, players who are poorly

informed, that is, players with low indices, should wager the minimum amount WL. In

contrast players who are well informed, those with high indices, should wager the maximum

amount WH . (Recall that when wagers do not depend on the state of the world a player’s
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payoff is monotone in the wager.)

We examine each of these strategy profiles separately and show one of them is indeed

an equilibrium. Specifically, consider n truthful strategy profiles indexed by I = 1, . . . , n.

In each of these profiles players always predict truthfully, but wager different amounts. In

profile I, every player i ≤ I wagers WL while every player i > I wagers WH .

The wagers are independent of the players’ signals, and by symmetry,

E[(pj −X)2 − (pi −X)2 | Si = 1] = E[(pj −X)2 − (pi −X)2 | Si = 0] .

Therefore, given any such a strategy profile I, the expected net incoming transfer to player

i, conditional on her information, equals

tIi = E

[∑
j

wiwj
W

(
(pj −X)2 − (pi −X)2

) ∣∣∣∣ Si
]

= wi
∑
j

wj
W

E
[
(pj −X)2 − (pi −X)2 | Si

]
= wi

∑
j

wj
W

E
[
(pj −X)2 − (pi −X)2

]

= wi

∑
j

wj
W
µj(1− µj)

− wiµi(1− µi)
where we observe that E[(pi −X)2] = µi(1− µi) for any player i.

For every strategy profile I, define f(I) to be the highest index i such that ti ≤ 0. By

the above equality, tIi /wi is increasing with i, and tI1 ≤ 0 while tIn ≥ 0. In other words,

a player’s expected share increases with the precision of her information, and players who

are less informed make a nonpositive profit while players who are more informed make a

nonnegative profit. This implies the index f(I) is such that, for all i ≤ f(I), tIi ≤ 0, and for

all i > f(I), tIi > 0. For the strategy profile I to be an equilibrium, it suffices that all the

players with an index up to f(I) wager the minimum amount allowed WL (as these players

do not make a positive profit from betting), while the players with an index greater than

f(I) wager the maximum amount WH (as these players make a positive profit from betting

that is maximized when they wager the maximum amount). Hence if we can find some J

with f(J) = J , it means strategy profile J is an equilibrium. To show existence of such an

index value, let g(I) = f(I)− I. As g(1) ≥ 0 and g(n) ≤ 0, there must exists some I such

that g(I) ≥ 0 and g(I + 1) ≤ 0. Noting that f is increasing as tIi /wi is also increasing in

I, we have that either f(I) = I or f(I + 1) = I + 1. Therefore at least one of the strategy

profiles I ∈ {1, . . . , n} is an equilibrium.
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7 Discussion

7.1 Eliciting Expert Advice

Although our analysis was made in the context of betting markets, the Brier betting mech-

anism can also viewed as a mechanism to elicit information from a group of experts. In

this alternative context, an elicitor queries a group of n forecasters regarding probability

estimates of an event of interest E. As before, X, indicator variable of the event E, denotes

the outcome. Each forecaster i announces a probability estimate pi of E. In contrast to

the setting considered in Section 5.2, we allow for the forecaster to incur a loss—as we

argue below, this is a desirable feature in that it discourages the uninformed forecasters

to participate. In order to do so, forecaster i must provide a deposit wi ≥ 0 (instead of a

wager). She may decide not to participate by setting her deposit to zero. The deposit can

be interpreted as a worst-case loss or a maximum liability amount, in that the forecaster is

guaranteed to lose no more than the amount deposited. As forecasters may have different

wealths, it is natural to grant forecasters the right to specify their own liability amount—in

particular, the mechanism does not prevent forecasters with low liability from participat-

ing. The larger the declared liability, the larger the potential losses, but also the larger the

potential gains.

The expert elicitation procedure differs from betting markets in that we permit another

party, the elicitor, to subsidize the market. A subsidy is often necessary to induce partic-

ipation: In this new context a forecaster’s utility reduces to her expertise fee, forecasters

typically do not get the additional entertainment value of the betting markets.4 The sub-

sidy can also incite forecasters to exert a potentially costly effort to retrieve high-quality

information. However a complete model with costly information acquisition is outside the

scope of this paper.

There are two natural ways to introduce the subsidy. First, the elicitor can give away

a fixed lump sum payment M , as in Section 5.2. Each forecaster i receives the net payoff

(M + W )πi − wi, where the share πi is defined as before according to Equation (1), and

W is the total sum deposited by the forecasters. In this variant, we only alter the budget-

balanced property of the Brier betting mechanism; the net payoffs now sum to M . The

properties (1)–(5) remain valid and our uniqueness result still applies. Low values of M

dissuade uninformed forecasters to participate, because their deposit would finance the

informed forecasters. As M grows larger, the mechanism attracts more forecasters, as even

a small share can generate large positive profits if the amount to share, M + W , is large

enough.

4Although in some cases forecasters who want to establish a reputation for themselves may wish to
participate even when they incur a loss.
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Alternatively, the elicitor can play a more active part in the mechanism. Acting as

a forecaster, she can provide a prior probability estimate p0 that E comes true, and can

deposit w0 = M to subsidize the market. The payoff functions remain the same as in

the Brier betting mechanism, accounting for this new player. As opposed to the other

forecasters, the elicitor does not expect to generate a profit. The subsidy plays the same

role as in the above mechanism. However in this second mechanism the elicitor may not

lose all of M . The actual loss depends on how the forecasters’ predictions compare with

her own. Specifically, if E occurs with probability p, the elicitor gives away the expected

amount

M
wi
W

[
(p0 − p)2 − (pi − p)2

]
to forecaster i, where W = M +

∑
i≥1wi. So forecaster i can only benefit from the subsidy

when she is more accurate than the elicitor, with respect to the absolute difference between

the probability estimate and the truth. Consequently if forecasters derive no personal value

from participation, this alternative mechanism deters all forecasters who are less informed

than the elicitor. Note that transfers between forecasters also occur, so that the actual

reward of a forecaster depends not only on how well she performs against the elicitor, but

also how well she performs against the other forecasters. However as forecasters can only get

positive transfers from the less informed forecasters, eventually no forecaster less informed

than the elicitor will want to participate. If M is low, the mechanism can even deter some

forecasters who are slightly more informed than the elicitor, but significantly less informed

than some other forecasters. Transfers between forecasters become negligible only when the

subsidy grows large in comparison to the forecasters’ aggregate liability.

7.2 Generalization of the Brier Betting Mechanism

The Brier betting mechanism is based on the Brier score which is a proper scoring rule. In

principle we can, however, plug any proper scoring rule s(q, x) taking values in the range

[0, 1] into Equation (1) to derive an alternative betting mechanism. Properties (1), (4) and

(5) continue to hold, but properties (2) and (3) are specific to the Brier score. Using the fact

that s(q, x) is a proper scoring rule, we immediately get that the following weaker analogs

are satisfied:

(2∗) For a given action profile (p1, w1), . . . , (pn, wn), if player i changes her prediction pi

to the true probability p, then her expected share under p increases.

(3∗) For a given action profile (p1, w1), . . . , (pn, wn), the expected share of player i decreases

if any other player j changes her prediction from pj to p.
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If the scoring rule is strictly proper, all increases/decreases are strict. Proposition 3 of Nau

(1985) shows that these two properties are respectively equivalent to seemingly stronger

properties:

(2′) For a given action profile (p1, w1), . . . , (pn, wn), if player i changes her prediction pi

to a convex combination of pi and p, then her expected share increases.

(3′) For a given action profile (p1, w1), . . . , (pn, wn), the expected share of player i decreases

when another player j changes her prediction pj to a convex combination of pj and p.

If the scoring rule is strictly proper and the convex combinations are strict, all increases and

decreases are strict. These last two properties are a natural generalization of the properties

(2) and (3) without using a notion of distance between predictions and true probabilities.

The proofs of Proposition 2 and our main result Theorem 1 extend to this more general

setting with minor modifications and yield the following result.

Theorem 2. Consider a wagering mechanism defined by the redistribution rule (π1, . . . , πn)

in which every function πi is twice continuously differentiable. The mechanism satisfies the

properties (1), (2∗), (3∗), (4) and (5) if and only if

πi((p1, w1), . . . , (pn, wn), x) =
wi
W

+ κ
wi
W

∑
j 6=i

wj
W

(s(pi, x)− s(pj , x))

for some κ ∈ [0, 1] and some twice continuously differentiable proper scoring rule s(q, x)

taking values in [0, 1].

In other instances a market designer may be interested in statistics such as the mean,

the median or the 95th quantile. While probability scoring rules elicit event probabilities,

a library of more general scoring rules which are proper for general statistics is well-known

and easily used here. The Brier betting mechanism and its set of properties can be adapted

to allow for predictions of such statistics by plugging the appropriate scoring rule in Equa-

tion (1). We start by presenting the extension under its most general form, then we provide

more concrete examples.

Let Ω be a set of outcomes and D be a set of probability distributions over Ω. Following

Lambert et al. (2008), we define a general statistic as a function Γ : D 7→ Θ, where Θ is the

set in which the statistic takes values, and Γ(P ) is the value the statistic takes under P .

The set Θ can be arbitrary, typically R or Rk for single or multi-dimensional real-valued

statistics. For example, if Γ denotes the mean of a random variable X, Γ can be expressed

as Γ(P ) =
∫
XdP .

A scoring rule for Γ is a function s(θ, ω) that returns a real-valued score as a function

of the realized outcome ω and a statistic estimate θ of the distribution over outcomes. The
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scoring rule s is proper if reporting true statistic values maximize the expected score, that

is, for all P ∈ D and all θ 6= Γ(P ),

EP [s(Γ(P ), ω)] ≥ EP [s(θ, ω)]

where EP is the expectation taken under the distribution P . The scoring rule s is strictly

proper if the maximization is strict.5

Let Γ be a statistic and s(θ, ω) be a proper scoring rule for Γ that takes values in [0, 1].

We extend the mechanism of Section 3 as follows:

• In stage one, every player i places a bet, which consists of a wager wi ≥ 0 and an

estimate θi for statistic Γ.

• In stage two, the realized outcome ω is publicly observed. Every player i receives a

fraction of the total amount wagered, based on the scoring rule s, according to the

formula:

πi((θ1, w1), . . . , (θn, wn), x) =
wi
W

+
wi
W

s(θi, x)−
∑
j

wj
W
s(θj , x)

 (11)

where W =
∑

j wj is the total amount wagered.

By construction, the resulting mechanism is budget balanced, and properties (1), (4),

and (5) continue to hold. Neither properties (2) and (3) nor their analogs (2′) and (3′) hold

in general, but the properties (2∗) and (3∗) continue to hold:

(2∗) For a given action profile (θ1, w1), . . . , (θn, wn), if player i changes her prediction θi to

the true value θ, then her expected share under P increases.

(3∗) For a given action profile (θ1, w1), . . . , (θn, wn), the expected share of player i decreases

if any other player j changes her prediction from θj to θ.

If the scoring rule is strictly proper, all increases/decreases are strict.6

Consider, for example, as set of outcomes x the interval [0, 1]. Let D be the set of prob-

ability distributions that are represented by a positive density function. If the mechanism

designer is interested in the median m, she can employ the strictly proper scoring rule

s(m,x) = 1− |m− x|
5Lambert et al. (2008) and Lambert (2011) provide the statistics for which strictly proper scoring rules

exist, and show how to construct these scoring rules.
6Using Proposition 1 and Theorem 1 of Lambert (2011), it can be shown that our uniqueness result in

Theorem 1 of the current paper continues to hold for continuous real-valued statistics, under either properties
(2′) and (3′) or properties (2∗) and (3∗).
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to which corresponds the redistribution rule

πi((m1, w1), . . . , (mn, wn), x) =
wi
W

+
wi
W

∑
j

wj
W

(s(mi, x)− s(mj , x))

=
wi
W

+
wi
W

∑
j

wj
W

(|mj − x| − |mi − x|) .

If instead she is interested in the mean m̄ and variance v, she can use the strictly proper

scoring rule

s(m̄, v, x) = 2− |m̄− x|2 − |m̄2 + v − x2|2 ,

or if she is interested in the 5% and 95% quantiles α5 and α95 she can take the strictly

proper scoring rule

s(α5, α95, x) =
2

3
+

3

10
(f(α95)− f(α5))−

1

3
|f(α5)− x| −

1

3
|f(α95)− x| .

8 Conclusion

In a broad study conducted over two decades, Tetlock (2006) finds that the predictions of in-

dividual forecasters, even domain experts, consistently perform worse than simple baselines.

Empirically, the average opinion of experts handily beats the average expert’s opinion, with

accuracy increasing in the number of inputs (Forsythe et al., 1992; Jacobs, 1995; Surowiecki,

2004; Reeves and Pennock, 2007; Chen et al., 2005; Dani et al., 2006; Page, 2007). Tradi-

tional scoring rules can elicit each expert’s private belief, but the elicitor’s cost grows with

the number of participants. Market scoring rules (Hanson, 2003, 2007), or sequential shared

scoring rules, where each new trader accepts a scoring rule and pays off the previous, are

more cost-effective but still require a subsidy to pay off the final trader and may fail to

induce information revelation is some scenarios.

We propose a class of wagering mechanisms: The Brier betting mechanism and its ex-

tensions. Agents are called to report some information about an uncertain outcome. Along

with their report, they deposit an amount of money in a common pot. Upon realization

of the outcome, agents receive a payment that depends on the true outcome and their own

report. Because they are self-financing, wagering mechanisms like ours naturally cater to

the kind of large, open groups that appear most effective in practice.

We show that the Brier betting mechanism satisfies a number of desirable properties that

scoring rules and prediction markets do not, and show that it is the only mechanism that

satisfies all of these properties. In a Bayesian setting in which actions of some agents may

influence the assessments of some other agent, we show that the Brier betting mechanism

exhibits a bias when agents are asymmetrically informed. However the bias, intrinsic to all
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wagering mechanisms, is typically small and vanishes to zero at a rate inversely proportional

to the number of agents, and independently of the information structure.
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Appendix: Proof of Lemma 2

Proof of Lemma 2: We first prove by induction that for all i ∈ {1, · · · , n}, there exist twice

continuously differentiable functions gi : (a, b)n−i+1 7→ R and hi : (a, b)n−1 7→ R such that

f(x1, . . . , xn) = gi(x1, xi+1, . . . , xn) + hi(x2, . . . , xn), (12)
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and then apply this result to show that the lemma statement holds.

When i = 1, the claim in Equation (12) holds trivially with g1 = f and h1 = 0. Now,

suppose that for for some i ≥ 1, Equation (12) holds. Then since

∂2f(x1, . . . , xn)

∂x1∂xi+1
= 0

for all values of x1, . . . , xn, and

∂2hi(xi+1, . . . , xn)

∂x1xi+1
= 0,

it must be the case that
∂2gi(x1, xi+1, xi+2, . . . , xn)

∂x1∂xi+1
= 0

for all x1, xi+1, . . . , xn ∈ (a, b).

Observe that, as gi is twice continuously differentiable,

∂2gi(x1, xi+1, . . . , xn)

∂x1∂xi+1
=
∂2gi(x1, xi+1, . . . , xn)

∂xi+1∂x1
. (13)

Hence, by twice integrating the right member of Equation (13), first with respect to x1

then with respect to xi+1, we find that there exist twice continuously differentiable functions

gi+1 : (a, b)n−i 7→ R and h̃i+1 : (a, b)n−i 7→ R such that

gi(x1, xi+1, . . . , xn)

= gi+1(x1, xi+2, . . . , xn) + h̃i+1(xi+1, . . . , xn).

We can then satisfy Equation (12) at i+ 1 by setting

hi+1(x2, . . . , xn) = hi(x2, . . . , xn) + h̃i+1(xi+1, . . . , xn) .

Taking i = n, we find that

f(x1, . . . , xn) = gn(x1) + hn(x2, . . . , xn) .

Let f1 = gn. Now, since hn is twice continuously differentiable, we can repeat the same

process for x2 to find f2. Repeating the process recursively for x3, · · · , xn−1 shows that

there exist a set of functions f3, · · · , fn such that

f(x1, . . . , xn) = f1(x1) + · · ·+ fn(xn) .
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