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We present a new automated market maker for providing liquidity across multiple logically interrelated
securities. Our approach lies somewhere between the industry standard—treating related securities as in-
dependent and thus not transmitting any information from one security to another—and a full combina-
torial market maker for which pricing is computationally intractable. Our market maker, based on convex
optimization and constraint generation, is tractable like independent securities yet propagates some infor-
mation among related securities like a combinatorial market maker, resulting in more complete information
aggregation. We prove several favorable properties of our scheme and evaluate its information aggregation
performance on survey data involving hundreds of thousands of complex predictions about the 2008 U.S.
presidential election.
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1. INTRODUCTION
During the Republican presidential primary in 2011–2012, the Irish prediction mar-
ket Intrade featured a number of interrelated propositions, including “Mitt Romney to
win Iowa”, “Romney to finish second in Iowa”, and “Romney to sweep the first five pri-
maries including Iowa”. As is standard practice from Wall Street to Las Vegas, Intrade
operated these securities independently. For example, as far as Intrade was concerned,
the price of “Romney to sweep” could eclipse the price of “Romney to win Iowa”, repre-
senting a logical impossibility.

A combinatorial security is a financial instrument whose payoff is an arbitrary func-
tion of a common set of input variables. (In our examples, we consider Boolean func-
tions of binary literals.) When clear from context, we sometimes refer to a security and
its payoff function interchangeably.

It is easy to see that enforcing all constraints among combinatorial securities is in-
tractable. Consider two Boolean securities A and B whose prices sum to more than
1. If they represent disjoint events, their probabilities must sum to 1 or less, which
presents an arbitrage opportunity. However, determining whether the two securities
are disjoint is equivalent to determining whether A ∩ B is unsatisfiable, an NP-hard
problem. Note that, in general, finding arbitrage in a system of combinatorial securi-
ties is NP-hard even if all securities are conjunctions of only two (positive or negative)
literals [Fortnow et al. 2004]. Maintaining point prices consistent with a standard
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market maker function such as Hanson’s [2003; 2007] logarithmic market scoring rule
(LMSR) is #P-hard, or as hard as satisfiability counting [Chen et al. 2008a].

We develop a method for propagating as much information as possible among log-
ically related securities while keeping our pricing algorithm tractable. By relieving
traders from correcting inconsistencies (a task that computers are far better at any-
way), we free them to concentrate on providing information in whatever form they
find natural. To the extent that the goal of a prediction market is to aggregate
information—and thus to reward traders for providing actual information and not
for their computing horsepower—automating the mechanical task of logical inference
should be beneficial.

As a running example, we consider the 2012 U.S. presidential election between
Democrat Barack Obama and Republican Mitt Romney.1 Votes in each of the fifty U.S.
states and the District of Columbia are tallied separately, and each state has its own
election result—either a win for the Republicans or the Democrats. The final national
winner is the candidate who earns a weighted majority of all the individual states,
where a state’s weight (number of electoral votes) roughly corresponds to its popula-
tion.2

In the election market, traders can buy base securities like “Republicans to win
Florida” or “Democrats to win Pennsylvania”, or derived securities such as

— Democrats to win PA and OH, and Republicans to win FL
— The same party to win both OH and FL
— Democrats to win 9 of the 10 northeastern states, or
— Republicans to win the national election.

Note that, even restricting to conjunctions, the number of possible events is 351, ex-
ponentially large. Yet, we would like to allow interested traders to buy and sell any
security from this set.

Intrade is an exchange: it only matches up willing traders and takes no positions
or risk of its own. Operating a combinatorial exchange, beyond the daunting compu-
tational challenge [Fortnow et al. 2004], is impractical for a more pedestrian reason:
it is hard to imagine how any given trade, selected from the unimaginably large sea
of choices, would happen to have a matching counter trade waiting to execute against
it. For this reason, an automated market maker, which always offers a price for any
security no matter how complex, is better suited for combinatorial prediction markets.

Unlike an exchange, a market maker by definition exposes itself to risk. Still, many
market makers have a provable worst-case upper bound on loss that’s logarithmic
in—or even independent of—the number of outcomes and holds regardless of the true
outcome or the sequence of trades [Chen and Pennock 2007; Othman and Sandholm
2011]. An exact combinatorial market maker fully propagates all information across all
securities, explicitly or implicitly maintaining a complete and consistent joint probabil-
ity distribution over the exponentially large outcome space. As a result, prices cannot
yield arbitrage opportunities.

Operating an exact combinatorial market maker is computationally even harder
than running an exchange [Chen et al. 2008a]. One way to recover efficiency is to
restrict the set of tradable securities [Abernethy et al. 2011; Agrawal et al. 2008; Chen
et al. 2007, 2008b; Guo and Pennock 2009; Pennock and Xia 2011]. Most of these re-
sults are negative, with even mild forms of expressiveness remaining intractable. A

1For simplicity of exposition we assume no additional candidates, but our formalism can accommodate three
or more candidates.
2This is again a simplification: Maine and Nebraska may split their electoral votes, but we can handle this
by splitting these states into multiple sub-states.



second solution, and the one favored in practice, is to simply ignore the relationships
among securities and create independent prediction markets for each security or small
groups of securities for which prices can be efficiently calculated. This approach is sim-
ple and fully general, yet does nothing to limit arbitrage and exposes the market maker
to the risk of exponentially large losses.

In this paper we propose a solution that lies between these two approaches. We im-
plement the pricing as in the independent-markets solution, but we detect and elim-
inate many forms of arbitrage using optimization and constraint generation. As a re-
sult, our market maker is tractable, propagates a large amount of information, and
maintains a reasonable loss bound.

Our method is inspired by Abernethy et al. [2011], who give a broad characterization
of arbitrage-free and bounded-loss pricing rules. Their pricing rules are derived from
smooth and convex cost functions defined over share vectors corresponding to quan-
tities of individual securities sold by the market maker. Prices correspond to partial
derivatives of the cost. Abernethy et al. [2011] show that prices generated by the cost-
based mechanism yield bounded loss and are arbitrage-free as long as the set of price
vectors (across all possible allocations) coincides with the convex hull of payoff vectors
(across all possible outcomes), which we call the realizable polytope.

The independent-markets solution generates price vectors that lie in a superset of
the realizable polytope. Our arbitrage detection can be viewed as an incomplete sepa-
ration oracle for the realizable polytope. Rather than detecting separating hyperplanes
between an arbitrary point and the realizable polytope, we only provide a separation
oracle for a relaxed version of the realizable polytope. Thus, even after our detectors
exhaust all of the arbitrage opportunities they can find, there may be some residual ar-
bitrage due to the relaxation of the realizable polytope. The problem of approximating
the realizable polytope is an active area of research in machine learning that arises
in the context of variational inference methods for graphical models [Wainwright and
Jordan 2008; Sontag and Jaakkola 2007], and these connections underlie our approach
to constraint-based market making.

Abernethy et al. [2011] also propose a mechanism based on a separation oracle, but
they require that it be repeatedly called in each pricing computation until no more
arbitrage is detected. This is impractical for even moderately sized prediction markets
since pricing computations need to be efficient. Here, we decouple pricing computations
(which are done efficiently as in independent markets) from arbitrage detection, which
is key for practical implementations. This modification requires a new analysis of the
market maker’s loss. The second generalization that we make is dropping Abernethy
et al.’s assumption of the “realizable market initialization”.

Apart from the theoretical contribution, we perform an extensive evaluation of our
mechanism on over 300,000 probability assessments from the 2008 U.S. presidential
elections collected in a Princeton University survey [Wang et al. 2011]. We assess the
forecasting performance of our approach against competitive benchmarks and study
the impact of various separation-oracle choices. Apart from small-scale laboratory
studies [Hanson et al. 2007], we are not aware of previous empirical evaluations of
combinatorial prediction markets, so we believe this is a significant contribution in its
own right and, to our knowledge, represents the largest-scale evaluation of a prediction
market to date.

2. PRELIMINARIES
2.1. Logarithmic market scoring rule
We begin with a simple example of a market maker based on the logarithmic market
scoring rule (LMSR) [Hanson 2003, 2007]. Let Ω be a finite set of outcomes, which



correspond to mutually exclusive and exhaustive states of the world. Each outcome
ω ∈ Ω is associated with an atomic security, which pays out $1 if the outcome occurs
and $0 otherwise. The state of the market is specified by a vector θ ∈ RΩ listing the
number of shares of each atomic security sold by the market maker. Security prices
are defined using the cost function

C(θ) = B ln
(∑

ω∈Ω e
θω/B

)
,

where B is the liquidity parameter controlling the rate at which prices change. We con-
sider traders buying bundles δ ∈ RΩ of atomic securities (negative entries correspond
to short-selling). A trader holding a bundle δ receives the payoff δω if outcome ω is real-
ized. A trader wishing to buy a bundle δ in the market state θ must pay C(θ+δ)−C(θ)
to the market maker, after which the new state becomes θ+δ. Thus, the instantaneous
price of security ω is

pω(θ) = ∂C(θ)/∂θω =
eθω/B∑

ω′∈Ω e
θω′/B

.

The cost of a bundle δ ∈ RΩ can be expressed using the instantaneous price vector as:

C(θ + δ)− C(θ) = B ln
(∑

ω∈Ω pω(θ)eδω/B
)
. (1)

Note that the vector p(θ) is a probability distribution over Ω and can thus be inter-
preted as the market’s current belief about the state of the world. Moreover, the set of
price vectors p(θ) across all θ ∈ RΩ corresponds to the interior of the |Ω|-dimensional
simplex. Thus, any belief that assigns non-zero probability to every outcome is express-
ible, given sufficient purchasing power of the traders.

For an arbitrary subset E ⊆ Ω, called an event, we can define an Arrow-Debreu
security which pays out $1 if and only if ω ∈ E. Such a security can be modeled as a
bundle δ with δω = 1[ω ∈ E], where we use the notation 1[·] for an indicator equal to
1 if the enclosed statement is true and 0 otherwise. The instantaneous price of such a
bundle corresponds to the probability of the event E under the market’s belief.

In the election market example, the set of outcomes is Ω = {0, 1}51 (where 0 indicates
Democrats, and 1 indicates Republicans winning a given state). The event “Democrats
to win OH” then corresponds to the set E consisting of outcomes ω that assign 0 to OH.
Calculating LMSR prices according to the formula above requires summation over
Ω, and is therefore intractable. This intractability appears unavoidable since exact
LMSR pricing of even pairwise conjunctions is #P-hard [Chen et al. 2008a]. On the
other hand, Xia and Pennock [2011] and Chen et al. [2008b] discuss approximating
LMSR prices using importance sampling, Metropolis-Hastings, or Monte Carlo meth-
ods. For example, Predictalot, a combinatorial prediction market game built and oper-
ated by Yahoo Labs for NCAA men’s college basketball in 2010 and 2011, Soccer World
Cup 2010, and India Cricket World Cup 2011, employed a naive version of importance
sampling and attracted thousands of fans. Still, the volatility of approximate prices
reduces the user experience and makes controlling market maker loss and allowing
limit orders more difficult.

2.2. Cost-based market making
We introduce a generalization of LMSR due to Abernethy et al. [2011]. Results in this
section and the next are largely taken from Abernethy et al. [2011], with the exception
of Thm. 2.2, which is new. We use a slightly different notation and focus primarily on
the cost function rather than its conjugate.

As before, let Ω be the set of outcomes, which we no longer require to be finite. We
consider a set of securities indexed by i ∈ I where I is a finite index set. Each security



is associated with a payoff function φi : Ω→ R, with φi(ω) corresponding to the payoff
for each share of security i if the outcome ω occurs. If a trader holds a bundle δ ∈ RI ,
and the outcome ω occurs, she receives a payoff of δ · φ(ω). Our previous example is
recovered by setting I = Ω and φi(ω) = 1[i = ω].

The state of the market is determined by an allocation vector θ ∈ RI , and security
prices are determined by a differentiable convex cost function C : RI → R. As in LMSR,
to buy a bundle δ in a market state θ, a trader is charged C(θ + δ) − C(θ). Thus, the
cost-based market maker is fully specified by a tuple (Ω, I,φ, C).

The gradient of the cost function corresponds to the vector of instantaneous prices:
p(θ) = ∇C(θ). Thinking about p as a map p : RI → RI , we write imp for the image
of p, namely the set of all possible price vectors induced by C. While in LMSR instan-
taneous prices model probabilities, in this setting, prices model expected payoffs. If a
risk-neutral trader believes that the expected payoff for a bundle δ is above δ ·p(θ), she
is incentivized to buy the bundle. In LMSR, we were able to express all possible (non-
degenerate) beliefs. Here, we are also interested in cost functions that allow expressing
all realizable expectations. Let

M = co{φ(ω) : ω ∈ Ω}

denote the convex hull of the payoff vectors across all outcomes. Note that points inM
are exactly all realizable vectors of expected payoffs. We refer to M as the realizable
polytope.

Let cl denote the closure of a set. The following results, proved by Abernethy et al.
[2011], show that the correspondence between cl(imp) and M that we observed for
LMSR is not just a coincidence, but a necessary condition for arbitrage-free bounded-
loss market making:

THEOREM 2.1 (SEE THMS. 2 AND 5 OF ABERNETHY ET AL. [2011]). For any cost-
based market maker:

(1) The worst-case loss is unbounded ifM 6⊆ cl(imp).
(2) Prices are arbitrage-free if and only if imp ⊆M.

2.3. Market maker’s loss: Convex conjugacy and Bregman divergence
To quantify the loss of a market maker, we next introduce the convex conjugate of the
cost function. Compared with Thm. 6 of Abernethy et al. [2011], our bound (Thm. 2.2)
makes fewer assumptions, and in particular, we do not require that the market starts
in a state θ0 such that p(θ0) ∈M (i.e., we do not require a “realizable initialization”).

Given a market maker with the cost function C, the convex conjugate of C is the
function R : RI → (−∞,∞] defined by

R(µ) = sup
θ∈RI

[θ · µ− C(θ)] . (2)

From convex analysis [Rockafellar 1970, Thm. 12.2 and Cor. 26.4.1],R is a convex func-
tion, with R(µ) = ∞ for µ 6∈ cl(imp). By checking the first order optimality conditions
in Eq. (2), it is also easy to see that for µ = p(θ) = ∇C(θ), we have

R(p(θ)) = θ · p(θ)− C(θ) . (3)

For µ ∈ cl(imp) \ (imp) the value can be either finite or infinite (depending on C). For
LMSR, cl(imp) is the simplex, and R is equal to negative entropy:

R(µ) =

{∑
ω∈Ω µω lnµω if µ is a probability distribution on Ω

∞ otherwise.



Since, by our definition, C is continuous and convex, from convex analysis [Rockafellar
1970, Cor. 12.2.1] we also have the double conjugacy relationship:

C(θ) = sup
µ∈RI

[θ · µ−R(µ)] . (4)

Comparing Eq. (3) with Eq. (4), we obtain that the supremum of Eq. (4) is attained at
µ∗ = p(θ); it turns out that this is the unique µ∗ attaining the supremum [Rockafellar
1970, Thm. 23.5.a,b*].

For θ ∈ RI and µ ∈ RI , the mixed Bregman divergence is defined as
D(µ‖θ) = R(µ) + C(θ)− θ · µ .

By Eq. (4), Bregman divergence is always non-negative. Since Eq. (4) is uniquely max-
imized by µ∗ = p(θ), we also obtain that D(µ‖θ) = 0 if and only if µ = p(θ). Hence,
Bregman divergence can be viewed as a measure of distance between µ and p(θ). For
LMSR, it corresponds to the Kullback-Leibler divergence:

D(µ‖θ) =

{∑
ω∈Ω µω ln (µω/pω(θ)) if µ is a probability distribution on Ω

∞ otherwise.

Bregman divergence bounds the loss of a market maker:

THEOREM 2.2. Let θ0 be the initial state of the market. If outcome ω occurs, the loss
of the market maker is no more than D(φ(ω)‖θ0).

PROOF. Let θ be the final state of the market. The loss of the market maker is then
loss(ω) = (θ − θ0) · φ(ω)− C(θ) + C(θ0)

=
[
θ · φ(ω)− C(θ)

]
− θ0 · φ(ω) + C(θ0)

≤ R(φ(ω))− θ0 · φ(ω) + C(θ0)

= D(φ(ω)‖θ0)

where the middle inequality follows by Eq. (2).

The key insight here is that for bounded loss we do not need to have the corre-
spondence cl(imp) = M, and we do not even need to have realizable initialization
p(θ0) ∈ M. All that is required is that D(µ‖θ0) be bounded for all µ ∈ M. For exam-
ple, for LMSR,

sup
µ∈M

D(µ‖θ0) = max
ω∈Ω

ln(1/pω(θ0)) ,

which is finite.
Perhaps not surprisingly, Bregman divergence D quantifies not only the loss of the

market maker, but also the gain of an arbitrager:

THEOREM 2.3 (THM. 7 OF ABERNETHY ET AL. 2011). If the market is in a state θ,
a trader has an opportunity to earn a guaranteed profit of at least minµ∈MD(µ‖θ).

3. MARKET MAKING WITH LINEAR CONSTRAINTS
Our design has two components. First, we break a large market into small markets,
which solves the intractability, but may introduce arbitrage. Second, we introduce a
general scheme for detecting and removing arbitrage based on a formalization of re-
alizability using linear equalities and inequalities. In this section, we discuss these
two components in more detail and also introduce two specific algorithms for arbitrage
removal (projected gradient and coordinate descent). In the next section we provide
specific algorithms for arbitrage detection in the elections market.



3.1. Independent markets
One general approach to tractable market making with bounded loss is to partition I
into groups g ⊆ I and use tractable bounded-loss cost functions Cg for each group g,
effectively treating each group as a separate market.

Formally, let G be a system of non-empty sets g ⊆ I such that I =
⊎
g∈G g, where⊎

denotes disjoint union. The block of coordinates θi for i ∈ g is written as θg. Let
Cg : Rg → R for g ∈ G be differentiable convex functions. Define

C(θ) =
∑
g∈G

Cg(θg) .

From this, we can easily derive that p(θ) = (pg(θg))g∈G . We assume that the compu-
tation of Cg and pg = ∇Cg is tractable, hence so is the computation of C and p. If the
market is initialized at a state θ0 so that Dg(µg‖θ

0
g) is bounded, we also have that

D(µ‖θ0) =
∑
g∈G Dg(µg‖θ

0
g) is bounded. However, this bound will typically be worse

than for an LMSR-style market, especially if there is a large degree of deterministic
dependence among payoffs in individual groups.

In the election market, we consider securities associated with base events, such
as “Democrats to win FL”, as well as securities associated with conjunctions and
disjunctions of base events. Base-event securities appear in groups of two, such
as {“Democrats to win FL”, “Republicans to win FL”}. Pairwise conjunctions appear in
groups of four, corresponding to disjoint exhaustive events of the form {A ∩ B, A ∩
Bc, Ac ∩B, Ac ∩Bc}, where A and B are base events. Conjunctions and disjunctions of
three or more base events appear in groups of two, such as {A ∩B ∩ C, Ac ∪Bc ∪ Cc}.

If in the election market example we use LMSR with the same liquidity parameter
for each group, the worst-case loss bound, while finite, will be linear in the number of
groups, which is exponential in the number of base events. In contrast, LMSR on the
entire outcome space suffers a loss which is at most logarithmic in the outcome-set
cardinality, or linear in the number of base events.

There are three avenues for improving the independent-markets loss bound. First,
even though there is an exponential number of securities (and groups of securities),
not all of them will be traded. Groups that are never traded can be ignored in cost
calculations and do not contribute to the loss bound. In particular, during the run of a
mechanism, the number of traded groups grows at most linearly with the number of
realized trades. Second, each group can in principle have its own liquidity parameter
Bg, which functions as a loss-bound coefficient for that group. It is possible to choose
liquidity parameters that reflect the “complexity” of a security (smaller Bg for groups
with more complex securities) and obtain a better upper bound on the final loss. For
example, positing a probability measure β(i) over securities, we can set Bg = Bβ(g)
and guarantee the loss bound proportional to B regardless of the number of groups
(assuming sensible initialization for each group). This allows treatment of not only
finite but also countable index sets I. The third approach, which is the subject of the
next section, is based on the observation that there are many easy-to-detect arbitrage
opportunities in the independent markets, and the market maker can recoup some
of its losses by acting as an arbitrager. Apart from eliminating potential losses, this
empirically results in better information aggregation, as we will see in Sec. 5.

3.2. Arbitrage detection and minimization
From Thm. 2.3, it is clear that ensuring realizable prices helps eliminate arbitrage
opportunities. Given the hardness results for even just pairwise conjunctions, we do
not attempt to efficiently describe the realizable polytope M, and instead will only



assume access to an efficient representation of a superset M̃ ⊇ M. In particular, we
assume that M̃ is described by linear inequalities

M̃ = {µ ∈ RI : A>µ ≥ b}
where A ∈ RI×K and b ∈ RK. Columns of A are denoted ak where k ∈ K is the index
over linear constraints. Thus, realizability constraints are of the form:

ak · µ ≥ bk .

Equalities can also be represented as pairs of inequalities. As a special case, φ(ω)
must satisfy these constraints regardless of the outcome ω. This means that the vector
ak ∈ RI can be viewed as a bundle with the guaranteed payoff of at least bk. Thus,
whenever the price of ak drops below bk, i.e.,

ak · p(θ) < bk ,

there is an arbitrage opportunity. In such situations, we allow the market maker to
buy this bundle and move the market away from arbitrage.

We extend the market maker’s state by a non-negative vector η ∈ RK+, whose entries
correspond to the amount of each of the arbitrage bundles that the market maker
bought; thus, η represents a “bundle of bundles”, which translates to the bundle Aη
in the original security space. This leads to the definition of the extended cost of the
market maker:

C̃(θ,η) = C(θ + Aη)− b · η
where θ ∈ RI indicates amounts of shares bought by traders and η ∈ RK+ is an internal
vector of the market maker. The addition of Aη accounts for the purchase of Aη orig-
inal securities by the market maker, subtraction of b · η accounts for the guaranteed
payoff to self. The market maker follows the following protocol:

ALGORITHM 1: Cost-based Market Making with Linear Constraints
Input:

outcome space Ω, security space I, payoff function φ, cost function C, initial state θ0

matrix A and vector b defining M̃ ⊇M
Protocol:

initialize η0 = 0
for t = 1, . . . , T (where T is an a priori unknown number of trades):

receive a request for a bundle δt

sell the bundle δt for the cost C̃(θt−1 + δt, ηt−1)− C̃(θt−1, ηt−1)
let θt = θt−1 + δt

choose ηt ∈ RK+ such that C̃(θt,ηt) ≤ C̃(θt,ηt−1)
observe ω
pay (θT − θ0) · φ(ω) to traders

Let ∆t = C̃(θt,ηt−1)−C̃(θt,ηt) ≥ 0 denote the improvement in the extended cost due
to updating η after the t-th transaction. Next we prove that the extended-cost market
maker has bounded loss, provided that the initial cost function C yielded bounded loss
and that updating η yields better loss bounds.

THEOREM 3.1. Let θ0 be the initial market state. If outcome ω occurs, the loss of the
cost-based market maker with linear constraints is at most D(φ(ω)‖θ0)−

∑T
t=1 ∆t.



PROOF. According to the protocol above, the loss of the market maker is

loss(ω) = (θT − θ0) · φ(ω)−
∑T
t=1

[
C̃(θt,ηt−1)− C̃(θt−1,ηt−1)

]
= (θT − θ0) · φ(ω)−

∑T
t=1

[
∆t + C̃(θt,ηt)− C̃(θt−1,ηt−1)

]
= (θT − θ0) · φ(ω)− C̃(θT ,ηT ) + C̃(θ0,η0)−

∑T
t=1 ∆t

= (θT − θ0) · φ(ω)− C(θT + AηT ) + b · ηT + C(θ0)−
∑T
t=1 ∆t

=
[
(θT + AηT ) · φ(ω)− C(θT + AηT )

]
− (A>φ(ω)− b) · ηT − θ0 · φ(ω) + C(θ0)−

∑T
t=1 ∆t

≤ R
(
φ(ω)

)
− θ0 · φ(ω) + C(θ0)−

∑T
t=1 ∆t

= D
(
φ(ω)‖θ0

)
−
∑T
t=1 ∆t

where the inequality follows by Eq. (2) and because A>φ(ω) ≥ b and ηT ≥ 0.

The protocol above allows a wide range of arbitrage detection strategies. In par-
ticular, note that the set of constraints K can grow over time. For example, there are
classes of constraints which are exponentially large (in the number of base events), but
which have efficient algorithms for finding the most violated constraint. Even when ef-
ficient exact algorithms are not available, we might be able to design approximation
algorithms or heuristics which return violated constraints. This approach is known as
constraint generation. The constraint generation can run in parallel with the predic-
tion market protocol or as the first step of the update of η. In the next section we work
out a detailed example of specific constraints and constraint generation approaches for
the conjunction market. In the remainder of this section, we discuss two approaches
for updating η, assuming a fixed set of constraints.

3.3. Projected gradient-descent update

For this update, we assume that the gradient ∇ηC̃(θ,η) is Lipschitz-continuous and L
is an upper bound on its Lipschitz constant. We consider the t-th round of the protocol,
and write θ for θt, η for ηt−1 and η′ for ηt. Let µ = p(θ + Aη). Let

g = ∇ηC̃(θ,η) = A>µ− b , ĝ = min(g, Lη) ,

where the minimum in the definition of ĝ is entry-wise. Note that gk and ĝk are nega-
tive whenever the constraint k is violated. The projected gradient-descent update is of
the form

η′ = (η − g/L)+ = η − ĝ/L

where (·)+ denotes the entry-wise positive part. The next theorem shows that this
update decreases extended cost whenever some constraints are violated:

THEOREM 3.2. Let L, θ, η, g, ĝ be defined as above. Then

C̃(θ,η′)− C̃(θ,η) ≤ −η · (g − ĝ)− ‖ĝ‖2/2L ≤ −‖ĝ‖2/2L .

PROOF. The proof is standard and follows by plugging the expression for η′ into the
Taylor-series style upper bound

C̃(θ,η′) ≤ C̃(θ,η) + (η′ − η) · ∇ηC̃(θ,η) + L
2 ‖η

′ − η‖2 .

If the Lipschitz constant is initially not known, it is possible to use a strategy along the
lines of [Nesterov 2007]: initialize L by a conservative lower bound, and verify that the



bound in the proof of Thm. 3.2 holds at η′; whenever it does not hold, increase L by a
constant factor. The Lipschitz constant will be found with an additive overhead in the
running time proportional to the log of the ratio between the Lipschitz constant and the
initial lower bound. The calculated Lipschitz constant is reused in consecutive rounds
of the protocol, so this overhead is incurred only once (and asymptotically vanishes as
the number of trades T increases).

3.4. Coordinate-descent update for sums of LMSR markets
The running time of the projected-gradient update is proportional to the number of
non-zero entries of matrix A. As more and more securities are traded and more con-
straints generated, this can become prohibitively expensive. An alternative is to up-
date one coordinate ηk at a time with a running time proportional to the number of non-
zero coefficients in the constraint. Projected gradient descent and Thm. 3.2 discussed
in the previous section can be easily adapted to single-coordinate updates. Here we de-
scribe an alternative coordinate-descent approach based on optimizing an upper bound
similar to Dudı́k et al.’s PLUMMET algorithm [2007]. Empirically, we have found that
this update decreases the cost faster than the Taylor-series bound of Thm. 3.2.

We only treat the independent-markets costs where each group uses LMSR. We con-
sider updating a single coordinate ηk by an amount δ. Let ek be the k-th basis vector,
and for a fixed η, θ, let F denote the change in the cost function after the update
η′ ← η + δek:

F (δ) = C̃(θ,η + δek)− C̃(θ,η) .

As before, let µ = p(θ+Aη). Let Aik denote a single entry of A, and Ag the block with
entries in Rg×K. Using Eq. (1), we can rewrite F as

F (δ) =
∑
g∈G

[
Cg
(
θg + Ag(η + δek)

)
− Cg(θg + Agη)

]
− δbk

=
∑
g∈G

Bg ln

∑
i∈g

µie
δAik/Bg

− δbk .

We seek to decrease the cost function as much as possible by minimizing F over δ ≥
−ηk (this constraint is equivalent to η′k ≥ 0). We proceed by bounding F from above
using the inequality log(1 + x) ≤ x:

F (δ) ≤ −δbk +
∑
g∈G

∑
i∈g

Bgµi(e
δAik/Bg − 1) . (5)

We bound eδAikηk/Bg from above using the following piecewise linear bound, which is
valid for |x| ≤M :

eδx − 1 ≤


x(eδM − 1) /M if x > 0

(−x)(e−δM − 1) /M if x < 0

0 if x = 0

To apply this bound, we split the sum in Eq. (5) into two sub-sums corresponding to
Aik > 0 and Aik < 0. Denoting

M = max
g∈G, i∈g

|Aik/Bg| , A+ =
∑

i∈I: Aik>0

µiAik , A− =
∑

i∈I: Aik<0

µi(−Aik) ,

and plugging the piecewise linear upper bound into Eq. (5) yields

F (δ) ≤ −δbk +A+(eδM − 1)/M +A−(e−δM − 1)/M . (6)



Now, we can explicitly minimize the right-hand side of Eq. (6) under the constraint
δ ≥ −ηk. From the first-order optimality conditions, we find that the optimizing δ∗

satisfies the following:

(1) if
(
−bk +A+e−ηkM −A−eηkM

)
> 0: δ∗ = −ηk

(2) otherwise: δ∗ =


1
M ln

(
bk+
√
b2k+4A+A−

2A+

)
if A+ > 0

1
M ln

(
−A

−

bk

)
if A+ = 0

Similar to projected-gradient style single-coordinate update, the update above requires
only prices that appear with non-zero coefficient in the constraint k, and after the
update only these same prices are affected. Thus, the time complexity is proportional
to the number of non-zero coefficients in the corresponding constraint (we treat the
maximum group size as a constant).

4. CONJUNCTION MARKET
In this section we construct a tractable conjunction market over Boolean variables. We
begin by describing securities and their grouping, and continue by providing a specific
set of equality and inequality constraints.

The outcome space is an n-dimensional Boolean hypercube Ω = {0, 1}n defining base
events

Aj = {ω ∈ Ω : ωj = 1} and Acj = {ω ∈ Ω : ωj = 0} for j = 1, . . . , n.

Base events correspond to literals in propositional logic. Let L = {A1, A
c
1, . . . , An, A

c
n},

be the set of all literals. We construct the index set I by combining literals and symbols
∩ and ∪ into certain set-theoretic expressions. The payoff function for each security i
is defined as φi(ω) = 1[ω ∈ i]. Realizability in this case amounts to consistency among
prices when viewed as probabilities.

We consider the following security groups:

(1) base securities: for each j = 1, . . . , n, we introduce the group {Aj , Acj}
(2) base-pair securities: for a pair of distinct positive literals A,B ∈ L, we introduce

the group {A ∩B, A ∩Bc, Ac ∩B, Ac ∩Bc}
(3) conjunction and disjunction securities: let m ≥ 3 and L1, . . . , Lm ∈ L such that Lj

are literals from distinct groups; let Lc1 be the complementary literals; we introduce
the group {L1 ∩ · · · ∩ Lm, Lc1 ∪ · · · ∪ Lcm}

The total number of securities is exponential in n, but we do not explicitly keep track
of all of them. We initialize the market-maker with base securities only. The remaining
security groups are added during the execution of mechanism as traders request price
quotes and realize trades. Once the security is added it remains in the set I. Thus, the
representation of the market state (ignoring linear constraints) is increasing at most
linearly with the number of trades.

When a new security is added, its price needs to be initialized. Base events are typi-
cally initialized using some prior information. For elections, we may use poll results or
historic averages. For derived events, we can either use prior information (if available),
or form a reasonable initial price based on the prices of the component events. Let µ
be the current price vector, and write µ[i] as an alternative notation for µi. We use the
following initialization:

— base-pair security L1 ∩ L2, where L1, L2 ∈ L, is initialized as

µ[L1 ∩ L2]← µ[L1]µ[L2]



— when a conjunction security L1 ∩ · · · ∩ Lm and the complementary disjunction are
added, we first ensure that all the base-pair securities Lj ∩Lk for 1 ≤ j < k ≤ m are
in the index set I (e.g., by recursively initializing), and initialize as

µ[L1 ∩ · · · ∩ Lm]← min

{
min

1≤j≤m
µ[Lj ], min

1≤j<k≤m
µ[Lj ∩ Lk]

}
.

4.1. Local consistency constraints
For all base-pair securities and conjunctions we introduce the following constraints to
ensure that they are locally consistent with the individual literals appearing in them:

— for a base-pair group {A ∩B, A ∩Bc, Ac ∩B, Ac ∩Bc}:

µ[A ∩B] + µ[A ∩Bc] = µ[A]

µ[A ∩B] + µ[Ac ∩B] = µ[B]

— for a conjunction L1 ∩ · · · ∩ Lm and each of its literals Lj :

µ[L1 ∩ · · · ∩ Lm] ≤ µ[Lj ] .

4.2. Clique constraints
Consider a disjunction L1 ∪ · · · ∪ Lm. Let {L′1, . . . , L′k} ⊆ {L1, . . . , Lm}. For any proba-
bility distribution P, we must have (by the union bound and Bonferroni inequalities):

P[L1 ∪ · · · ∪ Lm] ≥ P[L′1 ∪ · · · ∪ L′k] ≥

 ∑
1≤j≤k

P[L′j ]

−
 ∑

1≤j1<j2≤k

P[L′j1 ∩ L
′
j2 ]

 .

The above inequality gives rise to a clique constraint:

µ[L1 ∪ · · · ∪ Lm] ≥

 ∑
1≤j≤k

µ[L′j ]

−
 ∑

1≤j1<j2≤k

µ[L′j1 ∩ L
′
j2 ]

 .

The “clique” here refers to the fact that each index 1, . . . ,m can be viewed as a node and
we subtract away the probability µ[L′j1 ∩ L

′
j2

] of the edge between each pair of nodes.
The number of clique constraints grows exponentially with the size of conjunction.
Rather than including all constraints, we only attempt to find the most violated one,
corresponding to the clique that maximizes the value of the right-hand side. For small
conjunctions, it is easy to exhaustively enumerate all possibilities. For larger conjunc-
tions, we note that the objective is a non-monotone submodular function and use a
constant-factor approximation algorithm based on local search [Feige et al. 2007].

4.3. Spanning-tree constraints
Following Galambos and Simonelli [1996], the probability of a disjunction L1∪· · ·∪Lm
can also be bounded from above as

P[L1 ∪ · · · ∪ Lm] ≤

 ∑
1≤j≤m

P[Lm]

−
 ∑

(j1,j2)∈T

P[Lj1 ∩ Lj2 ]


where T contains m − 1 pairs describing edges of a spanning tree on nodes 1, . . . ,m.
Replacing P by µ, we obtain a spanning-tree constraint on realizable prices. Finding
the tightest upper bound of this form is equivalent to finding the maximum spanning
tree over nodes 1, . . . ,m with the edge (j1, j2) having the weight µ[Lj1 ∩ Lj2 ].



5. EXPERIMENTS
In this section we report on an empirical evaluation of our constraint-generation based
market maker (CGMM) on survey data from the 2008 U.S. presidential election. Our
implementation uses coordinate descent to detect and eliminate arbitrage opportuni-
ties, bringing market prices closer to coherence, and makes use of the Local, Clique,
and Tree constraints described in the previous section.

5.1. Data and Methodology
The data set was provided by Wang et al. [2011] and consists of over 300,000 prob-
ability forecasts surveyed from 16,000 individual judges prior to the 2008 election.3
The judges were given questionnaires asking for their probability estimates for base
events such as “Obama/McCain to win FL”, as well as probabilities for conjunctions or
disjunctions of up to three base events. (The survey assumes that the probability of a
third candidate winning a state is zero.) By the survey design, all fifty states appear
in some conjunction or disjunction, and typically in several. To compare our market
maker’s prediction performance against LMSR, which cannot scale to 50 states, we
also sub-selected a data set of securities over just 10 states, allowing for exhaustive
enumeration of all possible outcomes. We selected the 10 states that appeared most
frequently in the data set, which were: CO, MA, MI, NY, OR, PA, SD, TX, WA, WV.

Tab. I provides a breakdown of the number of events of different types in each data
set. While sub-selecting 10 states biases the events towards smaller conjunctions and
disjunctions, we found that the distributions of the judges’ estimates were qualita-
tively similar in both data sets, with spikes near 0 and 1 and a uniform distribution in
between.

Table I. Distribution of security types across the small and complete survey data
sets.

States P P ∩Q P ∪Q P ∩Q ∩ S P ∪Q ∪ S Total

10 27,754 2,280 2,327 399 387 33,147
50 134,841 57,789 57,789 57,789 57,789 365,997

For our evaluation, we ignore the judge identities in the data and instead treat each
individual probability estimate as a single agent that seeks to trade on the correspond-
ing security. The agents are each given the same budget, and are processed in order
(after a random permutation). Each agent is processed only once. An agent purchases
shares of its desired security until the price reaches its probability estimate, or its
budget is exhausted, whichever occurs first. We do not allow short selling: if an agent’s
estimate lies below the current price then it instead buys the complementary security,
which is equivalent to short-selling. In this experimental setup the key parameter is
the budget, which controls the degree to which agents are able to move prices towards
their estimates.

Once all agents have been processed, we take the final prices as probability esti-
mates and evaluate their stochastic accuracy according to two standard scoring rules.
In the following, let A be the event that occurs within a given group, and let µ[A] be
the price (i.e., probability) that the market maker ascribes to A.

— Log score. The log score is defined as lnµ[A].
— Quadratic score. The quadratic score is defined as −(1− µ[A])2.

3The survey data can be obtained at www.princeton.edu/guanchun/Election Data/.
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Fig. 1. Forecasting performance of CGMM, using all types of constraints, against the benchmarks of LMSR
and independent markets on the small dataset (10 states). For each budget setting, the symbols indicate the
individual results for the five permutations. Curves are plotted through the mean score at each budget.

Both of these scoring rules are proper, meaning that they are maximized in expecta-
tion by reporting one’s true belief. Note that each score is normalized in the sense that
it takes on negative values and the maximum possible score is zero. Scoring rules are
simply negative loss functions; we use scoring rules to be consistent with the litera-
ture on prediction markets [Wang et al. 2011]. The corresponding loss functions are
standard in machine learning: the log score corresponds to log loss which is optimized
by the maximum-likelihood estimate, while the quadratic score (also known as Brier
score) corresponds to squared error which is optimized by the least-squares estimate.

The final score is obtained by taking the average score over all securities that some
agent explicitly purchased, not all securities that were internally created by the con-
junction market. The securities purchased correspond to the events of interest in the
election. For each market maker we initialize the prices of base securities to the prob-
abilities of their events according to polls from 5 months prior to the election.

5.2. Evaluation on small data
We first examine forecasting performance on the small data set with 10 states where
it is possible to evaluate LMSR. As another benchmark we also consider independent
markets for all the securities. Our market maker can be run with various selections
of constraint generation schemes. At a minimum, it always uses Local consistency
constraints, and beyond these Tree and Clique constraint generators can be used alone
or in combination.

We obtained five permutations of the agent data set and evaluated the market mak-
ers on all five for a range of budget settings. Fig. 1 displays the Log and Quadratic
scores for the two benchmarks as well as our market maker using Local, Tree, and
Clique constraints in combination. We find that our market maker soundly outper-
forms independent markets for all budgets except small ones close to $1. We also see
that it achieves the highest score for the Quadratic score, while it is competitive with
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LMSR according to Log score. The figure also indicates that CGMM shows little vari-
ance in performance compared to LMSR.

Fig. 2 provides insights into the contribution of different types of constraints to
forecasting performance. We see an ordering in the contribution of constraints once
the budget is large enough. Clique constraints improve performance over Local con-
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Fig. 4. Forecasting performance of CGMM, using all types of constraints, against independent markets on
the complete dataset (50 states). Top panels give Quadratic scores while bottom panels give Log scores. Note
that scales for the vertical axes vary between plots.

straints, but not as much as Tree constraints. Notably, it is the combination of the two
that gives a substantial boost and makes CGMM competitive with LMSR; one pro-
vides upper bounds and the other lower bounds, which makes them complementary.
The same ordering is found for the performance on conjunctions and disjunctions of
size 3, but this is not the case for those of size 2, where Tree and Clique deter some-
what from the Local constraints. While CGMM performance improves with increasing
budget for the range examined here, LMSR and especially independent markets start
to suffer when budget is large enough. An explanation for this lies in the mechanics of
CGMM as compared to the benchmarks. With independent markets and LMSR, when
an agent with large budget moves the price on an event too far towards 0 or 1, it is up
to the following agents to correct it. With CGMM, the constraint generation following
the purchase will move the price back in line with other security prices.

This explanation is also borne out by Fig. 3. For large enough budgets, CGMM begins
to run a gain, which can be attributed to the automated arbitrage (i.e., constraint gen-
eration) following aggressive security purchases by agents moving prices to extremes
and incoherence. The loss trends for independent markets and LMSR are milder given
that these do not perform arbitrage. The revenue growth as a function of budget is
analogous for all market makers.

5.3. Evaluation on complete data
We now turn to forecasting performance on the complete data set with 50 states. Be-
cause LMSR requires exhaustive enumeration of outcomes, it cannot scale to this level



(indeed, it could not scale beyond 20 states), so independent markets are the sole
benchmark. Fig. 4 compares CGMM with Local constraints alone and with all con-
straint generators (Tree and Clique) against independent markets. We find the same
trends as for the small data set. CGMM with Tree and Clique constraints outper-
forms the benchmark according to both Quadratic and Log scores. The performance of
CGMM is more robust to the budget level than independent markets. We again see that
Tree and Clique constraints together improve over Local constraints for all securities
in aggregate, and for conjunctions/disjunctions of size 3, but Local constraints alone
dominate for those of size 2. We conclude from these trends that CGMM performs well
with large budget levels, which allow agents to fully incorporate their information into
the market while the constraint generation brings extreme prices back in line with
other security prices.

6. CONCLUSIONS
In this work we presented an automated market maker based on convex optimization
and constraint generation that lies between independent markets and a full combina-
torial market. We proved bounds on its loss and proposed a specific implementation for
conjunction securities of relevance to domains such as presidential elections. Our eval-
uation showed that the market maker is competitive with LMSR but retains the ability
to scale to exponential outcome spaces. The reason for its promise in practice lies in its
modularity: there is substantial freedom to choose the optimization algorithm to elim-
inate arbitrage opportunities (e.g., projected-gradient descent or coordinate descent),
and many possible schemes for effective constraint generation.

In immediate future work, we plan to introduce threshold constraints correspond-
ing to threshold securities which capture events of the form “Obama wins at least two
Southwest states”. Indeed, the most natural election security, “Obama/Romney wins
the presidency”, corresponds to a weighted threshold constraint. Note that these gen-
eralize both conjunctions and disjunctions. To handle such constraints, we see opportu-
nities to draw on so-called cycle constraints [Sontag and Jaakkola 2007] from graphical
models as well as more general integer-programming techniques such as Gomory cuts.

Another avenue for future work is to introduce non-myopic agents into the simula-
tions to evaluate the robustness of the different market makers against more intelli-
gent traders. For instance, one could consider agents that update their beliefs based
on market prices, agents that hold beliefs over several related securities (such as the
judges in our data set), and agents that bet strategically based on their perceived abil-
ity to move market prices.
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