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ABSTRACT

Systems for automatically recommending items (e.g., movies,
products, or information) to users are becoming increasingly
important in e-commerce applications, digital libraries, and
other domains where mass personalization is highly valued.
Such recommender systems typically base their suggestions
on (1) collaborative data encoding which users like which
items, and/or (2) content data describing item features and
user demographics. Systems that rely solely on collaborative
data fail when operating from a cold start—that is, when
recommending items (e.g., first-run movies) that no mem-
ber of the community has yet seen. We develop several gen-
erative probabilistic models that circumvent the cold-start
problem by mixing content data with collaborative data in a
sound statistical manner. We evaluate the algorithms using
MovieLens movie ratings data, augmented with actor and
director information from the Internet Movie Database. We
find that maximum likelihood learning with the expectation
maximization (EM) algorithm and variants tends to overfit
complex models that are initialized randomly. However, by
seeding parameters of the complex models with parameters
learned in simpler models, we obtain greatly improved per-
formance. We explore both methods that exploit a single
type of content data (e.g., actors only) and methods that
leverage multiple types of content data (e.g., both actors
and directors) simultaneously.
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Recommender systems suggest items of interest to users based
on their explicit and implicit preferences, the preferences of
other users, and user and item attributes. For example,
a movie recommender might combine explicit ratings data
(e.g., Bob rates Shrek a 7 out of 10), implicit data (e.g.,
Mary purchased The Natural), user demographic informa-
tion (e.g., Mary is female), and movie content information
(e.g., Scream is marketed as a horror movie) to make rec-
ommendations to specific users.

Pure collaborative filtering methods [3, 18, 25, 32] base
their recommendations on community preferences (e.g., user
ratings and purchase histories), ignoring user and item at-
tributes (e.g., demographics and product descriptions). On
the other hand, pure content-based filtering or information
filtering methods [19, 26] typically match query words or
other user data with item attribute information, ignoring
data from other users. Several hybrid algorithms combine
both techniques [1, 4, 7, 9, 23]. Though “content” usually
refers to descriptive words associated with an item, we use
the term more generally to refer to any form of item at-
tribute information including, for example, the list of actors
in a movie.

One difficult, though common, problem for a recommender
system is the cold-start problem, where recommendations
are required for items that no one (in our data set) has yet
rated, either explicitly or implicitly.! Pure collaborative fil-
tering cannot help in a cold-start setting, since no user pref-
erence information is available to form any basis for recom-
mendations. However, content information can help bridge
the gap from existing items to new items, by inferring sim-
ilarities among them. Thus recommendations can be made
for new items that appear similar to other recommended
items. In this paper, we explore several generative proba-
bilistic models that combine content and collaborative infor-
mation by using expectation maximization (EM) learning to

!The phrase cold start has also been used to describe the sit-
uation when almost nothing is known about customer prefer-
ences [10] (e.g., a start-up company has no little or no pur-
chase history). The problem of making recommendations
for new users can also be thought of as a cold-start prob-
lem. We concentrate on the new-item problem, although the
new-user problem is symmetric when we have access to user
attribute (e.g., demographic) data. The new-user problem
without attribute data essentially falls within the framework
of pure information filtering or information retrieval [26].



fit the model to the data. These models exploit collabora-
tive data from old items (unlike pure information filtering
methods), yet are also able to make informed predictions
when operating from a cold start (unlike pure collaborative
filtering methods).

In Section 3, we introduce the precise models that we are
considering for the cold-start recommendation problem. In
Section 4, we describe a technique for seeding the parameters
of complex models with values learned from simpler models,
resulting in dramatically improved recommendations. We
discuss the pros and cons of several evaluation metrics in
Section 5, and we look at performance results comparing
the models in Section 6. In Section 7, we conclude with
observations about these experiments and ideas about future
directions.

2. BACKGROUND AND RELATED WORK

Early recommender systems were pure collaborative filters
that computed pairwise similarities among users and rec-
ommended items according to a similarity-weighted average
[24, 32]. Breese et al. [3] refer to this class of algorithms
as memory-based algorithms. Subsequent authors employed
a variety of techniques for collaborative filtering, including
hard-clustering users into classes [3], simultaneously hard-
clustering users and items [33], soft-clustering users and
items [17, 23], singular value decomposition [28], inferring
item-item similarities [29], probabilistic modeling [3, 7, 12,
22, 23], machine learning [1, 2, 20], and list-ranking [5, 8, 21].
More recently, authors have turned toward designing hybrid
recommender systems that combine both collaborative and
content information in various ways [1, 4, 7, 9, 23]. To date,
most comparisons among algorithms have been empirical or
qualitative in nature [13, 27], though some worst-case per-
formance bounds have been derived [8, 20], some general
principles advocated [8], and some fundamental limitations
explicated [21].

Our algorithms utilize a set of generative probabilistic mod-
els that generalize Hofmann and Puzicha’s [16, 17] two-way
aspect models, and extend our previous work on three-way
aspect models [23]. Similar techniques are used in natu-
ral language processing applications under the name of ag-
gregate Markov models [30], and in social science applica-
tions (e.g., analyzing contingency tables) under the names
of structural equation models, modified path models, and
log-linear models with latent variables [11]. Our methods
build most closely on Hofmann and Puzicha’s model-based
clustering definitions [16, 17], Hofmann’s folding-in algo-
rithm [15], and Cohn and Hofmann’s event-space combina-
tion models [6].

Many recommender systems implicitly make a closed-world
assumption that all of the items that exist in the world
are observed at least once during training. In the aspect
model, this assumption manifests itself in the probability
estimates for the training-set contingency table that sum
to one (ruling out the existence of other items). In other
words, there is no probability mass left over for a new item
that is released to the public after building the contingency
table estimates. This mistaken assumption contributes to
the cold-start problem of modeling items that we have no
collaborative data for. Fortunately, the probabilistic inter-

Random Variable Object Interpretation
P p person
M m movie
D d director
A a actor
Z z latent class
T t event type

Table 1: Notation used in our model descriptions.

pretation of the aspect model allows us to use attribute in-
formation in a principled manner to make good cold-start
recommendations.

3. THE MODELS

We employ a class of generative probabilistic models, or mod-
els that encode probability distributions that generate or re-
construct the observed data, in a sense describing or explain-
ing the data. Model parameters are learned using expecta-
tion maximization (EM) in an attempt to find the model
most likely to explain the data.

Our models are mainly extensions and generalizations of as-
pect models [15, 16, 17]. Such models are useful for soft-
partitioning data, naturally incorporating the ability to, for
example, soft-cluster people by movies (collaborative fil-
tering) or people by content attributes like actors (hybrid
collaborative/content-based filtering). We divide the mod-
els into three categories: (1) Hofmann and Puzicha's [16, 17]
original two-way aspect models, (2) three-way aspect models
[23] that extend the two-way aspect model to incorporate a
third observed component of an event, and (3) mixed event-
space models (similar to [6]) that capture generative pro-
cesses with multiple types of events. Section 3.1 describes
the two-way aspect models. Section 3.2 explains how we can
make recommendations for items that are not explicitly part
of the model, by creating pseudo-items. Sections 3.3 and 3.4
present our three-way aspect models and mixed event-space
models, respectively. Table 1 summarizes some of the no-
tation used in this section and throughout the paper, while
Figure 1 gives graphical description of the various models
we will employ.

3.1 Two-Way AspectModels

Our first four models, denoted M1 through M4, are mod-
els for two-way co-occurence data. For example, consider
collaborative data in a movie domain, where observations
consist of tuples (p,m) recording that person p has seen
movie m. We store observations in a count matriz or con-
tingency table with rows ranging over people and columns
ranging over movies (or vice versa). Often our data may
include multiple observations that are identical (e.g., Lyle
saw Memento twice). With each observation we increment
by one the count of the appropriate contingency table cell
(or matrix entry). A naive probability estimate for each
cell is simply the observed frequency of events in that cell.
However, notice that using this method of assigning proba-
bilities, an empty cell implies that there is zero probability
of the corresponding person seeing the corresponding movie,
clearly an unrealistic inference.
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Figure 1: Bayesian networks of generative models
for recommending movies.
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An aspect model hypothesizes the existence of a hidden or la-
tent cause z (e.g., an affinity for a particular style of movies)
that motivates person p to watch movie m. According to the
generative model semantics, person p chooses a latent class
2z, which in turn determines the movie m watched. The
choice of movie m is assumed independent of p given knowl-
edge of z. Since z is hidden, we sum over possible choices
to define the distribution over (p, m):

Plo,m) = 3 P®P(zlp)P(ml2). (1)

Parameters P(z|p) and P(m|z) correspond to the Markov
processes of p stochastically choosing a latent class z, and
z stochastically choosing m. The P(p,m) values can be
thought of as smoothed estimates of the probability distribu-
tion of the contingency table. The latent variables perform
the smoothing in a manner that maximizes the model likeli-
hood (by keeping estimates of P(p, m) close to the empirical
distribution). The model also creates smoothed estimates
for the values P(p) and P(m), both taking their interpreta-
tions from contingency table analysis.

Equation 1 is an asymmetric formulation of the aspect model.

Using Bayes rule, we can re-write the equation in an equiv-
alent symmetric form:

P(p,m) = ) P(2)P(pl2)P(mlz). (2)

The generative interpretation of Equation 2 is that the latent
class z is chosen according to P(z), then p and m are chosen
independently according to P(p|z) and P(m|z), respectively.
Equation 2, which we refer to as model M1, is drawn as a
Bayesian belief network in Figure 1.

For model M1, the likelihood of the observed data given the

model is:

P(Datal®) = [P m)"®™, 3)

p,m

where O is the set of model parameters, and n(p, m) is the
number of times person p watched movie m (i.e., the value
of the cell (p,m) in the contingency table). The model pa-
rameters are chosen in an attempt to maximize the likeli-
hood (3) using EM, an iterative method that increases (3)
at each step until a local maximum is reached. Each itera-
tion consists of two steps: and expectation step (E-step) and
a maximization step (M-step). In this case, the two steps
operate as follows:

E-Step
P(zlp,m) o P(2)P(m|2)P(p|2)

M-Step:
P(plz) o Zn(p,m)P(z|p,m)
P(mlz) o Y n(p,m)P(zlp,m)
P(z) o Y n(p,m)P(zlp,m)

Our specific implementation uses a simulated-annealing-type
variant of EM called tempered EM [15]. Our own source
code [31] for fitting the two-way aspect model is available
upon request. We have found that this algorithm converges
in fewer then 100 iterations on most of our data sets. Once
the model is fit, we can recommend movies to a person p by
ranking movies that the person has not yet seen according
to the formula P(m|p) o< P(p, m).

Models M2 and M3 have the same structure as M1, sub-
stituting actors and directors, respectively, for movies. In
model M4, we pool actors and directors into a single “con-
tent” category, so that the dimensionality of the contingency
tables remains two. Models M2 through M4 are pictured
as Bayesian networks in Figure 1. In the cases of models
M2 through M4, movies are recommended using a folding-
in technique described in the next section.

3.2 Folding In

Notice that models M2 through M4 do not have a movie
object, as they are primarily content-based methods. In
order to recommend a movie, we must create a new movie
object out of the set of actors (or directors) that appear in
that movie. This pseudo-movie is then placed in the latent
space based on the content information. We use Hofmann’s
[15] folding-in algorithm (originally used to fold term-queries
into a document-word aspect model). For example, suppose
we have fit a person-actor model M2 and want to fold-in a
new movie. We create a new set of parameters P(z|m) and
use the actors in the movie (a,m) as evidence for placing
the movie in latent space in a manner that maximizes the
likelihood of the movie. All of the original parameters from
M2 are held constant during the process. The exact EM
algorithm operates as follows [14]:

E-Step:
P(z|a, m) x P(a|z)P(z|m)



M-Step:

P(zlm) x Z n(a, m)P(z|a, m)

a

Recommendations are made using:
P(plm) =) P(pl2)P(z|m)

If we desire an estimated value of P(p, m), we will first need
to estimate P(m). We are currently experimenting with
Bayesian weighting of movie-queries that computes an aver-
age of P(a) for the various actors in the movie.

3.3 Three-Way AspectModels

Models M5 and M6 are three-way aspect models, depicted
as Bayesian networks in Figure 1. An observation consists
of a triple, for example (p, m,a) in model M5. Three-way
models correspond to three-way contingency tables (in the
the case of M5, containing people, movies, and actors). As
in two-way contingency tables, we have empirical estimates
for the contingency table probabilities that are calculated
by counting. However, by hypothesizing the existence of la-
tent variables z, we can smooth these estimates to infer the
likelihood of events that have not occurred. The three-way
model extends the two-way model by assuming all three ob-
servable objects (people, movies, and actors) are distributed
independently given the latent class z. The exact distribu-
tion over observations is

P(p,m,a) = Y P(2)P(plz)P(ml|2)P(alz),
giving our data set the likelihood

I Pm oy,

p,m,a

P(Data|®) =

The corresponding generative process chooses a class z, then
chooses a person, a movie, and an actor independently. The
EM model-fitting procedure for this class of models is similar
to the two-way model, and is described in detail in our earlier
work [23].

3.4 Mixed Event-SpaceModels

Our final class of models are mixed event-space models that
encode a generative process consisting of multiple types of
events. Our formulation is similar to the definitions of Cohn
and Hofmann [6], as we will elaborate shortly. An example
of a two-space model is M7 (pictured in Figure 1) which has
a movie/actor space denoted A and a movie/person space
denoted P. A random variable T determines the type of
event (t) that will be generated. In the generative process
we pick z and ¢ independently. The movie is picked accord-
ing to distribution P(m|z). Assuming ¢ = P, a person is
chosen using P(p|z,P). If t = A, the probability of gen-
erating a person is zero. A symmetric generative process
exists for the A space of events. We say that an event of
type P occurs with probability 8 and an A event occurs
with probability 1 — 8. The maximum likelihood estimate
for B is calculated by counting events in the training data,
turning this value into a constant that disappears from the
model-fitting algorithm.

The likelihood of our data set is:

P(Datal®) = [] (8P, m[P))"®™ 4)
p,mEP
I1 (@-8)P(a,mlA)™m™
a,meEA
where
P(p,m|P) = > P(2)P(plz, P)P(mlz)
P(a,mlA) =

> _P(2)P(alz, A)P(m|2)

The EM algorithm for estimating the model parameters is:
E-Step:

P(zlp,m) o P(2)P(plz, P)P(m|z)
P(zla,m) o« P(z)P(a|z, A)P(m|z)

M-Step:

P(2) o ) n(p,m)P(zlp,m)

p,m

+ Z n(a, m)P(z|a, m)
P(alz, A) Z n(a, m)P(z|a, m)

m

Pl P) o 3 n(p,m)P(zlp,m)

m

P(m|z) o ) n(p,m)P(zlp,m)

P

+ Z n(a, m)P(z|a, m)

Model M7 is closely related to the joint probabilistic model
of Cohn and Hofmann. In the likelihood function below,
we take their model and substitute movies for documents,
people for citations, and actors for words:

_an(pm)
P(Data|®) = Hp(p|m’p)zp,n(p ) )
p,m
(1—a)n(a,m)

H P(alm, A) Zar »(e"m)  where

a,m

P(plm,P) = > P(p|z)P(zlm) and

P(alm,4) = > P(alz)P(zlm).

The main difference between equations (4) and (5) is that
the former is symmetric while the latter is asymmetric. This
distinction is roughly analogous to the difference between
Equations (1) and (2). Additionally, P(m) does not ap-
pear in Cohn and Hofmann’s model. If we choose to give a
generative interpretation to their model, the absence of the
P(m) parameters corresponds to a uniform distribution over
movies. The uniform constants P(m) can be pulled out of
the equation since they do not effect the likelihood surface.
A uniform distribution makes sense only if we want each



movie to be weighted equally in its contribution to the like-
lihood, ignoring the unequal number of observations associ-
ated with different movies. Note that Cohn and Hofmann
do not include the 8 and (1 — 3) parameters in their formu-
lation. However, if we assume 8 to be any fixed constant in
(0,1), we can pull 8 and 1 — 8 out of the likelihood formula
for (4) without affecting the maximum likelihood estimates
for the model parameters. The observation weights o and
(1—a) from (5) do not appear in our model, and could make
a significant difference in the likelihood surface. Our param-
eter seeding techniques (described below in Section 4) give
an alternative (but less general) method for weighting obser-
vation types. When « is set to 0.5 and P(m) is constrained
to be uniform in M7, the two models have equivalent likeli-
hood functions.

Model M8 is a natural extension of M7 that accommodates
both actors and directors. We define mixing proportions
B, B2, B3 such that E?:lﬂi = 1 and a class of events D
having the form (d, m). The likelihood of the data is

IT B:P@ mP))"*™ (6)

p,mEP

[T (B:P(a, mlay~em

a,m€EA

I1 BsP(d,miD))"@™.

d,meD

The EM algorithm for M8 is analogous to that of M7.

P(Data|®) =

In order to make a prediction for a new movie m and person
p, we fold-in the content just as for M2. The use of both
actors and directors requires a variant of the folding-in EM
algorithm:

E-Step

P(z|a, m) «x P(a|z, A)P(z|m)
P(z|d, m) «x P(d|z, D)P(z|m)
M-Step

P(z|m) Zn(a, m)P(z|a, m) + Zn(d, m)P(z|d, m).

a d

We elaborate on mixed event-space model, M13, in Section 4
below.

3.5 Mixed Event-SpaceModels as Two-Way

Models

In models M7 through M9 the random variable T' can be
eliminated to create an ordinary two-way aspect model sim-
ilar in structure to M4. Probability estimates related to
T exist implicitly within the newly created two-way model,
and can be calculated explicitly if necessary. This equiva-
lence suggests that models M7 though M9 (and also Cohn
and Hofmann’s model [6] under certain conditions) may be
unnecessarily complex. We define models M10 through M12,
pictured in Figure 1, to test this hypothesis.

Our insights regarding the structure of mixed event-space
models put Cohn and Hofmann’s observation weighting in
a new perspective. In a two-way model, when one object
is constrained to have uniform probability, we can weight

certain subclasses of the second object differently to maxi-
mize an objective function. In intuitive terms, the weighting
corresponds to relaxing our desire to fit the empirical distri-
bution of a contingency table for certain rows (or columns)
in order to obtain a better fit on more important rows (or
columns). Open research problems include (1) generaliz-
ing the observation-weighting technique to models without
a uniform distribution constraint, and (2) determining when
weighting is beneficial.

4. PARAMETER SEEDING FOR BETTER
PERFORMANCE

Preliminary model-fitting revealed that the models M7 and
M8 over-fit on the first iterations of EM. We measure over-
fitting in this instance by checking log-likelihood of held-out
data. Though tempered EM helps, the overall recommen-
dation performance suffers from a lack of good parameter
estimates. We found that parameter-seeding can greatly im-
prove performance. We use the fitted parameters from the
various two-way models and fold-in additional objects to
obtain a richer model. To optimize model M7 performance,
we take fitted parameters from M1, hold them constant, and
fold-in the actors based on actor/movie co-occurrence. For
model M8 we perform the same steps required for M7, but
fold-in the directors (based on movie co-occurrence) in ad-
dition to the actors. We create a new model M13 where
we take fitted parameters from M2 and fold-in the directors
based on actor co-occurrence.

We did not find the over-fitting effect when training M10,
and so this model is fit without parameter seeding.

5. PERFORMANCE CRITERIA

‘We propose three different performance metrics for evaluat-
ing the effectiveness of our models: the R value, the GROC
curve, and the CROC curve. There are many ways to think
about performance in a recommender system, and hence a
need for multiple metrics. A good metric should tell us
several things. For instance, we want to know how well a
recommender does in comparison to a divine or omniscient
recommender. We also want a sense of how well a recom-
mender performs in the high specificity area: customers will
become impatient with a recommender system that makes
many bad recommendations.

One useful metric is Breese et al.’s [3] rank scoring metric
R:

R= IOOM where R, = Z

Zu RZLa:c -

where the & function is the indicator function informing
whether person u saw the movie ranked j and « is a decay
constant used to emphasize the performance of the highest
ranked recommendations. R'*® is the R value of the omni-
scient recommender for user u—that is, an R value of 100
corresponds with perfect accuracy.

5(u, 5)
2G—D/(a=1)

A receiver operating characteristic (ROC) curve is a plot
showing true-positive/false-positive trade-offs for different
classification thresholds. These curves were originally de-
signed for evaluating performance in deciphering radar sig-
nals, but have found common usage in the medical literature



for comparing diagnosis techniques. ROC curves are essen-
tially equivalent to precision/recall curves in the information
retrieval community [26] and lift curves of in the Market-
ing literature. The terms precision and recall are analogous
to specificity and sensitivity respectively, where the latter
terms are found on ROC curves. Herlocker at al. [13] rec-
ommend the use of ROC curves as one measure to evaluate
recommender systems.

An alternative approach to the R value for measuring rec-
ommendation performance is an ROC curve based on global
rankings and outcomes of the (p;,m;). We call this a Global
ROC (GROC) curve, and the metric we compare is area un-
der the curve for the specificity region of interest. The omni-
scient recommender has an ROC curve with area one under
the curve. From the point of view of implementing a rec-
ommender system, a GROC curve is ideal when we intend
to make the recommendations we are most certain are cor-
rect to anyone in our data set. In particular, we may choose
not to recommend anything to person p if we have low con-
fidence in recommendations for this person. On the other
hand, we are willing to recommend more often to people for
whom we can recommend with greater confidence.

Obviously, the area under the GROC curve is not the right
metric for applications where we desire to recommend some
movies to everybody. Imagine a scenario where we are con-
sidering whether to recommend 5, 10, or £ movies to each
of our customers. At each selection of k, we can plot the
global sensitivity and specificity on an ROC curve. We call
such a curve a Customer ROC (CROC) curve. Unfortu-
nately, the omniscient recommender does not give any fixed
maximal area such as an area of one. To see why, imagine
using an omniscient recommender on a data set with three
people: person a sees four movies, person b sees two movies,
and person c¢ sees six movies. When we recommend four
movies to each person, we end up with two false-positives
from person b, lowering the area of the curve. However, for
any particular data set, we can plot the curve and calculate
the area of the omniscient recommender in order to facilitate
comparison.

6. RESULTS
6.1 Benchmark Data

Our data primarily comes from the MovieLens data set as-
sembled by the GroupLens project [13]. In order to obtain
actor and director information, we web-crawled the Inter-
net Movie Database (http://www.imdb.com). We speed up
model-fitting by considering only actors billed in the top ten
and throwing out any actors who appear in only one movie.

The data forms a boolean matrix pm;; where a ‘1’ indicates
that p; rated m; on the MovieLens web site. We call any
pm;; with a ‘1’ an observation. We take this to mean that
p; has been ‘observed’ to watch m;. Entries with ‘0’ indi-
cate no observation. In our experiments we randomly split
the movies into a training set and a test set, and then eval-
uated performance based on our ability to predict the test
set boolean matrix pmﬁj. We test only using the 665 movies
in the test set (out of 1682 total movies in the data set).
There are 943 people we make recommendations for, with
an average of 106 observations per person in the entire data
set boolean matrix. There are 41,379 observed events for
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Figure 2: A GROC curve comparing naive guessing,
M2, M5, M7, and M10 on the test set. Points are
drawn after making 0,15677,31354,... recommenda-
tions (out of 627,095 possible).

the test set movies out of a possible total of 627,095. All
results reported below come from the same test set in order
to facilitate comparison.

Approximately sixty percent of the movies in our data set
are the debut of a director. That is, according to our data,
these are the only movies that these directors have directed.
‘We want to be able to make recommendations for all movies
in our test set, and so we choose actors as the first piece of
evidence to consider. Virtually all movies in the test set
have actors that have appeared in the training set. After
we obtain baseline accuracy measurements for predictions
based on actor data, we combine director data with actor
data with hopes of improving overall recommendation per-
formance.

6.2 Cold-Start Recommendationswith Actor

Information

In order to assess the efficacy of using actor information for
making cold-start recommendations we fitted models M2,
M5, M7, and M10. GROC curves (Figure 2) and CROC
curves (Figure 3) demonstrate that we can obtain perfor-
mance that is well-above random. For instance, the CROC
curve tells us that using recommender M5, we can recom-
mend 40 movies to each person and expect about 10% of
the test set observations to be correctly predicted with a
false-positive rate of 0.57. In contrast, the random recom-
mender will correctly predict only 5.9% percent of the test
set observations with false-positive rate 0.60. The ideal rec-
ommender can predict 61% of the test set observations with
a false-positive rate of 0.02 when recommending 40 movies
to each person.
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Figure 3: A CROC curve comparing naive guess-
ing, an omniscient recommender, M2, M5, M7, and
M10 on the test set. Points are drawn after recom-
mending 0,10,20,... items to each person in the data
set.

In examining the GROC and CROC curves, we see some in-
teresting characteristics of the models. For example, we can
see that solid performance on the left side (low false positive
(fp) side) of the graph does not lead to good performance on
the right side (high sensitivity side). M5 is an example of a
model that gives leading GROC performance in the low fp
region, but performs less impressively if we desire very high
sensitivity. It is our opinion that recommender systems are
best evaluated in the low fp region of the ROC curve, and
so we feel that M5 gives the strongest performance by the
GROC criteria. In the CROC curve, M2 slightly outper-
forms its rivals in the low-fp region. As a general-purpose
recommender, we prefer M2; M2 is a simple model that per-
forms competitively by both GROC and CROC standards.

6.3 UsingDir ectorsto Impr ove Recommenda-
tions

We attempted to improve recommendations in Figures 2 and
3 by adding director information. We note that about 80%
of the observations in the test data are for movies directed
by people who direct more than once. Therefore, the ad-
ditional information provided by directors should improve
performance somewhat. The results in Figures 4 and 5 are
mixed. We include M2 as a baseline model. R values for all
models benchmarked are shown in Table 2.

The GROC curve performance of the models that combine
actor and director evidence are disappointing: none of the
models considered here outperform M2. Comparing M8 area
(0.7485) to MT results in Figure 2 we obtain only a marginal
improvement over M7’s 0.7449 area. In the GROC criteria,
we can recommend mostly to the people with large numbers
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Figure 4: A GROC curve comparing naive guess-
ing, M2, M4, M8, and M9 on the test set. Points
are drawn after making 0,15677,31354, ... recommen-
dations (out of 627,095 possible).

Model | M2 M4 M5 M7 M8 M9 M10 Ran.
Rval. | 74 82 78 59 50 46 3.7 7.0

Table 2: The ranked scoring (R) values for the
various models including the random recommender.
The decay term o was set to 5.0

of observations in the training set (these are people with
large estimates for P(p)). Under these circumstances the
director information helps little or not at all. On the other
hand, the CROC performance for model M4 in Figure 5 is
noticeably better than M2 in the low false-positive region.
We interpret this difference between GROC and CROC per-
formance to mean that director information can help for
people with fewer observations (lower P(p) estimates).

7. CONCLUSIONS AND FUTURE WORK

‘We proposed several probabilistic models for use as recom-
mender systems while addressing the cold-start problem, in
particular. Our benchmark results demonstrate that cold-
start recommendation of new items is a feasible enterprise in
the presence of adequate content information. In the movie
recommendation domain, actors can provide enough infor-
mation to recommend a movie that nobody has seen before.
In order to recommend a new movie based on its content,
we need to place the movie into a previously fitted model.
The folding-in method finds the coordinates P(z|m) in la-
tent space for movie m by maximizing the likelihood of the
new movie’s content information.

Our benchmark analysis relies on three different measures of
performance: R values, GROC curves, and CROC curves.
‘We have noted that recommender systems can be applied in



1.0

T Ooooooooooooo C
o©

0.8
1

Sensitivity
0.6

0.4

M-2 (Area: 0.6220)
M-4 (Area: 0.5985)
M-8 (Area: 0.6166)
M-9 (Area: 0.5838)

Random Recommender (Area: 0.5001)

0.2

o ¢ o b + Xx

Perfect Recommender (Area: 0.9640)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

Figure 5: A CROC curve comparing naive guess-
ing, an omniscient recommender, M2, M4, M8, and
M9 on the test set. Points are drawn after recom-
mending 0,10,20,... items to each person in the data
set.

various different settings, and so we adapt a standard tech-
nique (the ROC curve) to measure two specific performance
criteria that are relevant to recommender system deploy-
ment. In the CROC case we intend to recommend k movies
to each customer in the database, while in the GROC case
we intend to make the k recommendations we are most cer-
tain of. Our benchmarking results suggests that three-way
aspect model M) is a good choice for optimizing GROC
criteria, while two-way aspect M2 will perform better by
CROC standards. The difference in GROC and CROC def-
initions are helpful in analyzing the value of combining mul-
tiple forms of item-attribute information, such as actor and
director data. We see that by GROC standards, directors
do not help our models fitted with actor information. The
CROC curves tell a different story; director data leads to a
marginal improvement in recommender performance. The
difference between GROC and CROC results suggest that
auxiliary content data can improve recommendations for the
customers with less purchase/rating history, and therefore
lower estimates of P(p).

Our calculations and experiments with mixed event-space
models illustrate the relationship between the standard two-
way model, the event-space combination models of Cohn
and Hofmann, and our own mixed event-space models. Our
mixed event-space models over-fit in the first EM iterations
unless we i) seed the models with the parameters of simpler
models or ii) remove the constraining random variable T and
reformulate the mixed event-space model as a two-way as-
pect model. Our best performance with mixed event-space
models occurs with M7 where we seed the parameters from
the purely collaborative filtering model M1. This may at

first seem surprising, since we can fit the likelihood of com-
petitor M10 directly through EM. A comparison of M10 and
M7 benchmarking reveals that the joint probabilistic models
do not have the right likelihood function for recommender
applications; the seeding technique used for M7 overcomes
this limitation. In other application domains, M10’s likeli-
hood may be a better optimization objective function.
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