

Combinatorial Prediction Markets

David Pennock

Joint with:

Yiling Chen, Lance Fortnow, Sharad Goel, Mingyu Guo, Joe Kilian, Nicolas Lambert, Eddie Nikolova, Mike Wellman, Jenn Wortman

A Prediction Market

• Take a random variable, e.g.

Bin Laden captured by Sept 2009? (Y/N)

 Turn it into a financial instrument payoff = realized value of variable

http://intrade.com

Contract	Bid	Ask	Last	Vol	Chge
Osama Bin Laden to be captured/neutralised by 31 Mar 2009	4.0	5.3	5.0	1961	0
Osama Bin Laden to be captured/neutralised by 30 Jun 2009	5.8	8.0	7.2	841	0
Osama Bin Laden to be captured/neutralised by 30 Sep 2009	11.0	12.0	11.0	10	0

Jan 08 - 2:14PM GMT

Prediction Markets With Money

<u>?</u> Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge
US.RECESSION.08	1	72.2	73.9	2	74.0	34.9k	+3.0
Trade Jun BIRDFLU.USA.JUN08	100	6.0	14.0	5	10.0	1323	0
Trade July BIRDFLU.USA.SEP08	10	6.5	16.0	5	11.2	430	0
2 Contract	B Otv	Bid		A Otv			

<u>?</u> Contract	B Qty	BIQ	ASK	A Qty	Last	VOI	Chge
Trade JAN OSAMA.CAPTURE.MAR08	5	1.9	3.3	1	2.6	4888	0
OSAMA.CAPTURE.JUN08	4	5.1	5.7	25	5.5	2019	0
Trade Jun OSAMA.CAPTURE.SEP08	5	8.3	8.8	4	9.1	822	0

<u>?</u> Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge
Trade 2008DEM.NOM.OBAMA	22	71.8	72.0	55	72.0	403.0k	-1.3
Trade 2008DEM.NOM.CLINTON	50	28.5	28.9	4	28.9	549.1k	+1.1
· · · · ·							

<u>?</u> Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge
Trade مليك <u>ALABAMA.DEM</u>	0	-	10.0	20	10.0	56	0
Trade ALABAMA.REP	20	90.0	95.0	5	90.0	22	0
Trade July ALABAMA.FIELD	5	0.1	5.0	20	0.1	0	0
Trade ALASKA.DEM	20	5.0	10.0	17	7.5	23	0
Trade ALASKA.REP	20	85.0	95.0	20	92.5	45	0
Trade ALASKA.FIELD	5	0.1	5.0	20	0.1	0	0

Without

Androids Beat Humans in Soccer (BOTS)

Will a team of androids beat the human World Cup champs at a game of soccer by 2050?

Price: POP\$ 47.75

Status: ACT

Fuel-Cell-Powered Laptop (FCELL)

Will the first fuel-cell-powered laptop go on sale in the U.S. by the end of 2008?

• Buy offers Sell offers ACME stock \$300 **\$170 \$160** \$150 \$120 \$90 \$50

Buy offers
 ACME stock

Sell offers
\$300
\$170
\$160

Continuous Double Auction Uber-Hammer of the Financial World

- Used everywhere
 - Stocks, options, futures, derivatives
 - Gambling: BetFair, InTrade
- Related bets? Just use two CDAs
 - Max[YHOO-10], Max[YHOO-20]
 - Horse wins, Horse finishes 1st or 2nd
 - "Power set" instruments: Mutual funds, ETFs, butterfly spreads, "Western Conference wins"
 - Treats everything like apples and oranges, even hamburgers and cheeseburgers

- CDA was invented when auctioneers were people
- Had to be dead simple
- Today, auctioneers are computers...

• ...Yet CDA remains the standard

Like Ordering a Wendy's Hamburger

- Informal definition: A combinatorial market is one where users construct their own bets by mixing and matching options in myriad ways
- Wendy's bags circa March 2008: "We figured out that there are 256 ways to personalize a Wendy's hamburger. Luckily someone was paying attention in math class."

WeatherB	ill	: P	rice a	Contract
----------	-----	-----	--------	----------

						Sian Us Loa in Help			
reatherbill	home	learn	quot	te & buy	my account				
avel & Leisure change Indu hat weather do you r		otect agair	nst?						
Select a Contract Pick the contract that best suits your needs	Rainy Da	y 🚺				Questions? Call			
Description		Day Contract wil ion level is abov			for every day that the	See Also: Analyze Your Risk			
Choose Dates of Coverage									
Select Location (<u>clease read disclaimer</u>)	USA postal/zip	find weather s							
Choose Payment Terms	Pay me (is above	0.5 inches t paying me after) fo		n the precipitation level y me a maximum]			
Price	In an aver and 0.9 da	ys during this co	ontract perio	iny Days to be b d. You may want	etween 0.0 days to increase your ore extreme risk.	_			
Historical Payouts What this contract would have paid out in previous years	Year 2007 2006	Payout S0 S0	Year 1992	Payout \$0					

\$100

\$0

\$100

\$0

\$100

\$100

2004

2003

2002

2001

2000

1990

1989

1988

1987

1986

1985

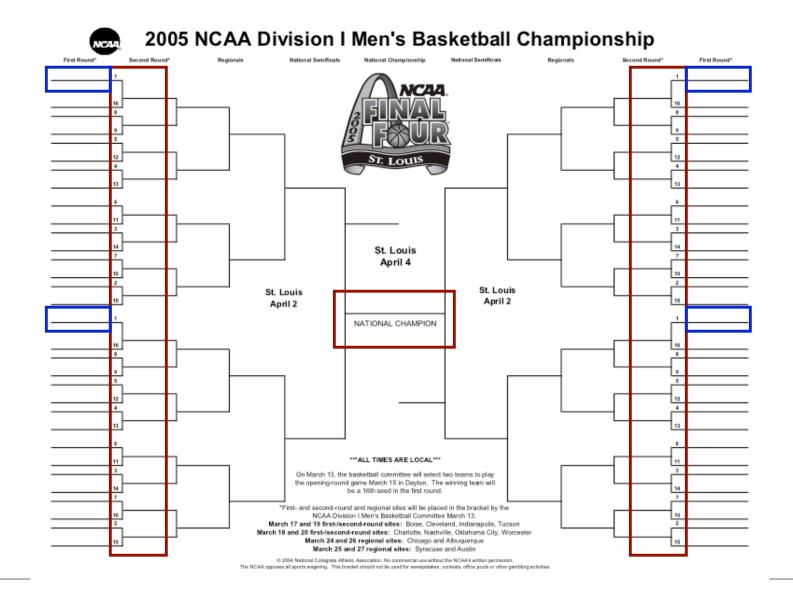
\$0

\$0

\$0

\$100

\$100


\$0

years

1

Example II: March Madness

Example II: March Madness

- Typical today Non-combinatorial
 - Team wins Rnd 1
 - Team wins Tourney
 - A few other "props"
 - Everything explicit (By def, small #)
 - Every bet indep: Ignores logical & probabilistic relationships

- Combinatorial
 - Any property
 - Team wins Rnd k
 Duke > {UNC,NCST}
 ACC wins 5 games
 - 2^{2⁶³} possible props (implicitly defined)
 - 1 Bet effects related bets "correctly"; e.g., to enforce logical constraints

- More choices -- better hedges
- More information
- Better processing of information: Let traders focus on predicting whatever they want, however they want: Mechanism takes care of logical/probabilistic inference
- Smarter budgeting

Combinatorial Bids vs. Combinatorial Outcomes

- Combinatorial bids
 - Bundling: "Western conference will win",
 "Gas prices between 1.75-2.50"
 - If bids are divisible, almost no disadvantage: use linear programming
- Combinatorial outcomes
 - Outcome space exponential: March Madness, horse racing
 - Needs combinatorial bids too
 - Usually intractable but don't give up hope

[Thanks: Yiling Chen]

YAHOO! Research

Auctioneer vs. Market Maker

- An *auctioneer* only matches buyers & sellers: never takes on any risk. CDA is an example.
- An *automated market maker* is always willing to accept both buy and sell orders at some prices
- Why an institutional market maker? Liquidity!
 - Without market makers, the more expressive the betting mechanism is the less liquid the market is (few exact matches)
 - Illiquidity discourages trading: Chicken and egg
 - Subsidizes information gathering and aggregation: Circumvents notrade theorems
- Market makers bear risk. But smart pricing algorithms can bound the loss of market makers
 - Market scoring rules [Hanson 2002, 2003, 2006]
 - Family of bounded-loss market makers [Chen & Pennock 2007]
 - Dynamic pari-mutuel market [Pennock 2004]

Combinatorics 1 of 3: Boolean Logic

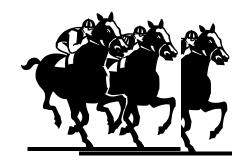
- Outcomes: All 2ⁿ possible combinations of n Boolean events
- Betting language Buy q units of "\$1 if Boolean Formula" at price p
 - General: Any Boolean formula (2^{2ⁿ} possible)
 - A & not(B) (A&C||F) | (D&E)
 - Oil rises & Hillary wins | Guiliani GOP nom & housing falls
 - Eastern teams win more games than Western in Tourney
 - Restricted languages we study
 - Restricted tournament language Team A wins in round i ; Team A beats B, given they meet
 - 2-clauses: A & not(C)

Combinatorics 2 of 3: Permutations

- Outcomes: All possible n! rank orderings of n objects (horse race)
- Betting language Buy q units of "\$1 if Property" at price p
 - General: *Any* property of ordering
 - A wins A finishes in pos 3,4, or 10th
 - A beats D 2 of {B,D,F} beat A
 - Restricted languages we study
 - Subset betting A finishes in pos 3-5 or 9; A,D,or F finish 3rd
 - Pair betting A beats F

Combinatorics 3 of 3: Taxonomy

- Outcomes: Cross product of n discretized numbers
- Betting language Buy q units of "\$1 if Function" at price p
 - General: Any mathematical function of the numbers
 - Restricted language we study
 - Taxonomy betting Numbers are arranged in a hierarchy Parent nodes = sum of children Can bet on the range of any node in the hierarchy



Predicting Permutations

- Predict the ordering of a set of statistics
 - Horse race finishing times
 - Number of votes for several candidates
 - Daily stock price changes
 - NFL Football quarterback passing yards
 - Any ordinal prediction
- Chen, Fortnow, Nikolova, Pennock, EC'07

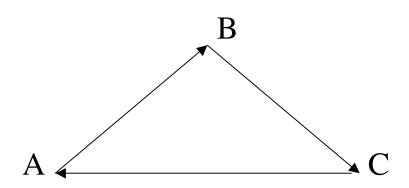
Market Combinatorics Permutations

- A > B > C .1 • B > C > A .3
- A > C > B .2 C > A > B .1
- B > A > C .1 C > B > A .2

Market Combinatorics **Permutations**

- D>A>B>C _01 \bullet D>B>C>A .05 .02 • D>A>C>B • D>C>A>B • D>C>B>A • D>B>A>C .01 .01 • A>D>B>C • B>D>C>A • A > D > C > B -02 • C>D>A>B .05 • B > D > A > C• C>D>B>A • B>C>D>A \bullet A>B>D>C .01 .2 • A > C > D > B• C > A > D > B • B > A > D > C .01 C > B > D > A• A > B > C > D.01 C > D > A • A > C > B > D**QD > B** • B > A > C > D
 - .1 2 .03 .1 .02 .03 .01 -02 .03 .01 .02 **_D > A**

Bidding Languages


- Traders want to bet on *properties* of orderings, not explicitly on orderings: more natural, more feasible
 - A will win ; A will "show"
 - A will finish in [4-7] ; {A,C,E} will finish in top 10
 - A will beat B ; {A,D} will both beat {B,C}
- Buy 6 units of "\$1 if A>B" at price \$0.4
- Supported to a limited extent at racetrack today, but each in different betting pools
- Want centralized auctioneer to improve liquidity & information aggregation

Auctioneer Problem

- Auctioneer's goal: Accept orders with non-negative worst-case loss (auctioneer never loses money)
- The Matching Problem
- Formulated as LP
- Generalization: Market Maker Problem: Accept orders with bounded worst-case loss (auctioneer never loses more than b dollars)

Example

- A three-way match
 - Buy 1 of "\$1 if A>B" for 0.7
 - Buy 1 of "\$1 if B>C" for 0.7
 - Buy 1 of "\$1 if C>A" for 0.7

Pair Betting

- All bets are of the form "A will beat B"
- Cycle with sum of prices > k-1 ==> Match (Find best cycle: Polytime)
- Match =/=> Cycle with sum of prices > k-1
- Theorem: The Matching Problem for Pair Betting is NP-hard (reduce from min feedback arc set)

Subset Betting

- All bets are of the form
 - "A will finish in positions 3-7", or
 - "A will finish in positions 1,3, or 10", or
 - "A, D, or F will finish in position 2"
- Theorem: The Matching Problem for Subset Betting is polytime (LP + maximum matching separation oracle)

Market Combinatorics Boolean

I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An
I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An
I am entitled to: \$1 if A1&A2&&An	I am entitled to: \$1 if A1&A2&&An

I am entitled to: \$1 if A1&A2&...&An I am entitled to: \$1 if A1&A2&...&An

 Betting on complete conjunctions is both unnatural and infeasible

Market Combinatorics Boolean

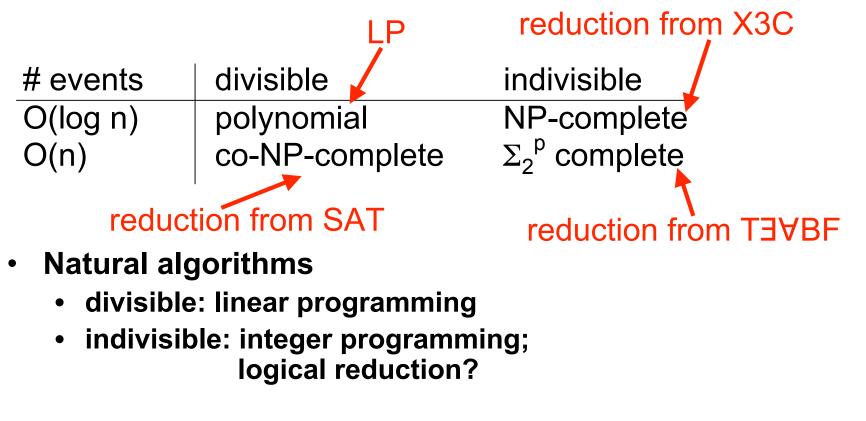
A bidding language: write your own security

I am entitled to: \$1 if Boolean_fn Boolean_fn							
For example							
I am entitled to: \$1 if A1 A2	I am entitled to: \$1 if A1&A7						
I am entitled to: \$1 if (A1&A7)	A13 (A2 <mark>A5</mark>)&A9						

- Offer to buy/sell q units of it at price p
- Let everyone else do the same
- Auctioneer must decide who trades with whom at what price... How? (next)
- More concise/expressive; more natural

The Matching Problem

- There are many possible matching rules for the auctioneer
- A natural one: maximize trade subject to no-risk constraint
- Example:
 - for \$0.40 • buy 1 of \$1 if A1


 - sell 1 of \$1 if A1&A2 for \$0.10
 - sell 1 of \$1 if A1&A2
- for \$0.20
- No matter what happens, auctioneer cannot lose money

trader gets \$\$ in state: A1A2 A1 $\overline{A2}$ $\overline{A1}A2$ $\overline{A1}A2$ 0.60 0.60 -0.40 -0.40 -0.90 0.10 0.10 0.10 0.20 -0.80 0.20 0.20 -0.10 -0.10 -0.10 -0.10

Fortnow; Kilian; Pennock; Wellman

Complexity Results

- Divisible orders: will accept any q* ≤ q
- Indivisible: will accept all or nothing

Automated Market Makers

- n disjoint and exhaustive outcomes
- Market maker maintain vector Q of outstanding shares
- Market maker maintains a cost function C(Q) recording total amount spent by traders
- To buy ΔQ shares trader pays C(Q+ ΔQ) C(Q) to the market maker; Negative "payment" = receive money
- Instantaneous price functions are $p_i(Q) = \frac{\partial C(Q)}{\partial q_i}$
- At the beginning of the market, the market maker sets the initial Q⁰, hence subsidizes the market with C(Q⁰).
- At the end of the market, C(Q^f) is the total money collected in the market. It is the maximum amount that the MM will pay out.

New Results: Pricing LMSR market maker

- Subset betting on permutations is #P-hard (call market polytime!)
- Pair betting on permutations is #P-hard
- 2-clause Boolean betting #P-hard
- Restricted tourney betting is polytime (uses Bayesian network representation)
- Approximation techniques for general case
- Published in EC'08 and STOC'08

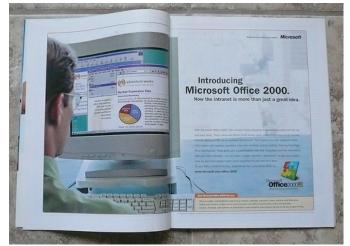
	Permut	ations		Boolean		Taxonomy		
	General	Pair	Subset	General	2-clause	Restrict Tourney	General	Tree
Auction- eer	NP-hard EC'07	NP-hard EC'07	Poly EC'07	NP-hard DSS'05	co-NP- complete DSS'05	?	?	?
Market Maker (LMSR)	#P-hard EC'08	#P-hard EC'08	#P-hard EC'08	#P-hard EC'08 Approx STOC'08	#P-hard EC'08	Poly STOC'08	#P-hard AAMAS '09	Poly AAMAS '09

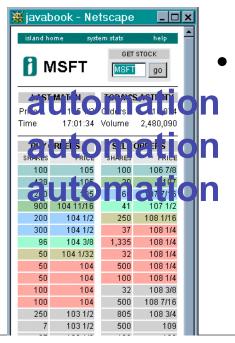

What is (and what good is) a combinatorial prediction market?

http://blog.oddhead.com/ 2008/12/22/what-is-and-whatgood-is-a-combinatorialprediction-market/

$Y_{A}HOO!$ bracketology

- March Madness bet constructor
- Bet on any team to win any game
 - Duke wins in Final 4
- Bet "exotics":
 - Duke advances further than UNC
 - ACC teams win at least 5
 - A 1-seed will lose in 1st round



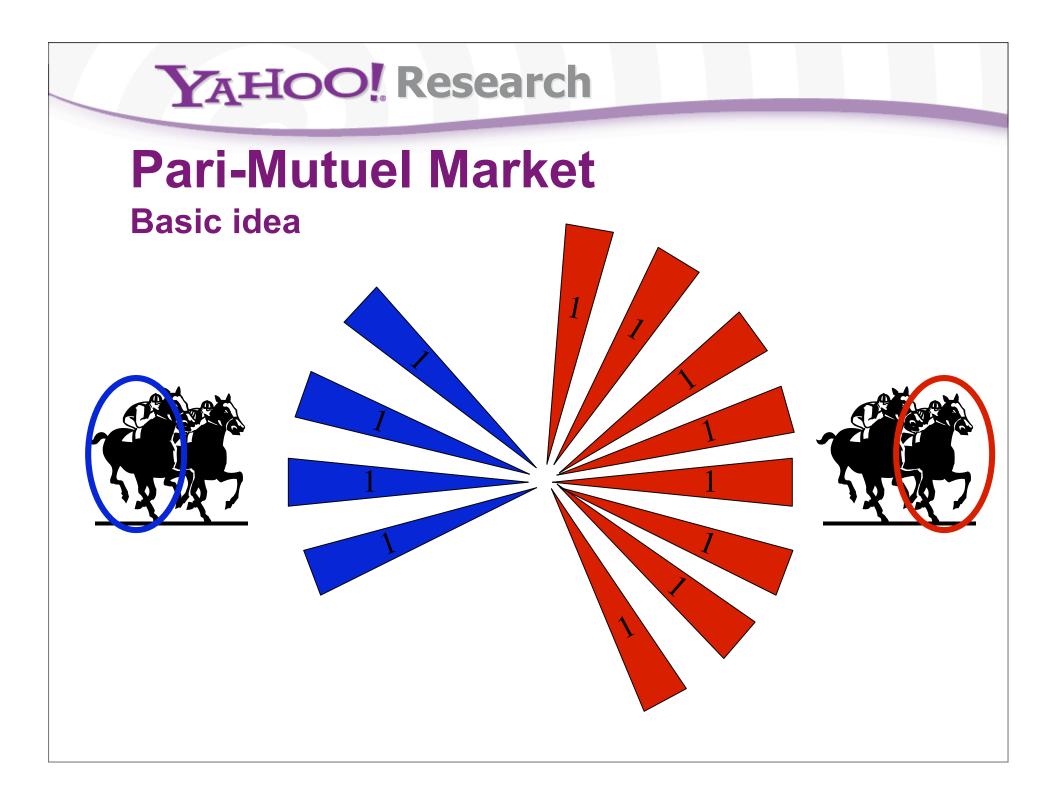

- MayDay 2008: CFTC asks for help
- Q: What to do with prediction markets?
- Right now, the biggest prediction markets are overseas, academic (1), or just for fun
- CFTC may clarify, drive innovation
- Or not

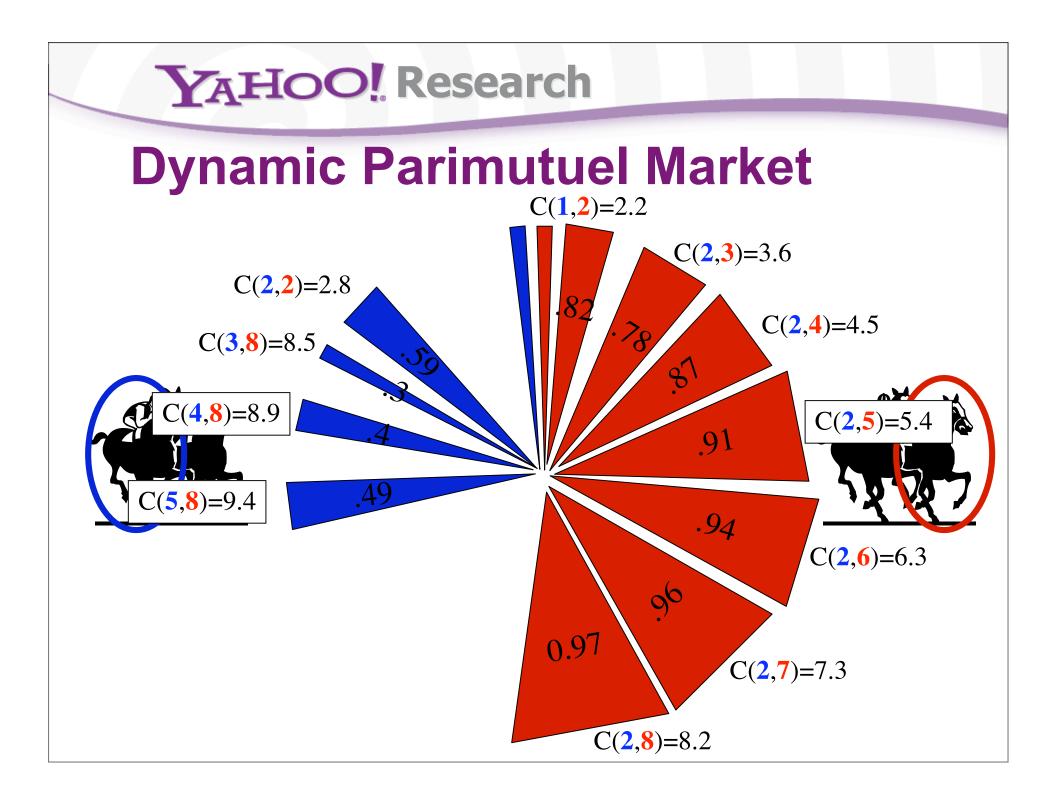
Advertising Then and Now

 Then: Think real estate Phone calls Manual negotiation "Half doesn't work"

Now: Think Wall Street Computer learns what ad is best Computer mediates ad sales: Auction Computer measures which ads work Advertisers buy *contextual events*: User i views/clicks/converts on page j at time t

Dynamic Parimutuel Market: An Automated Market Maker





What is a pari-mutuel market?

- Before outcome is revealed, "odds" are reported, or the amount you would win per dollar *if* the betting ended now
 - Horse A: \$1.2 for \$1; Horse B: \$25 for \$1; ... etc.
- Strong incentive to wait
 - payoff determined by *final* odds; every \$ is same
 - Should wait for best info on outcome, odds
 - → No continuous information aggregation
 - → No notion of "buy low, sell high"; no cash-out

Share-ratio price function

- One can view DPM as a market maker
- Cost Function:

$$C(Q) = \sqrt{\sum_{i=1}^{n} q_i^2}$$

• Price Function:

$$p_i(Q) = \frac{q_i}{\sqrt{\sum_{j=1}^n q_j^2}}$$

- Properties
 - No arbitrage
 - $price_i/price_j = q_i/q_j$
 - price_i < \$1

Mech Design for Prediction

	Financial Markets	Prediction Markets
Primary	Social welfare (trade) Hedging risk	Information aggregation
Secondary	Information aggregation	Social welfare (trade) Hedging risk

Mech Design for Prediction

- Standard Properties
 - Efficiency
 - Inidiv. rationality
 - Budget balance
 - Revenue
 - Truthful (IC)
 - Comp. complexity
- Equilibrium
 - General, Nash, ...

- PM Properties
 - #1: Info aggregation
 - Expressiveness
 - Liquidity
 - Bounded budget
 - Truthful (IC)
 - Indiv. rationality
 - Comp. complexity
- Equilibrium
 - Rational
 expectations

Competes with: experts, scoring rules, opinion pools, ML/stats, polls, Delphi