YA피‥ Research

Combinatorial Prediction Markets

David Pennock

Joint with:
Yiling Chen, Lance Fortnow, Sharad Goel, Mingyu Guo, Joe Kilian, Nicolas Lambert, Eddie Nikolova, Mike Wellman, Jenn
Wortman

YAHOO! Research

A Prediction Market

- Take a random variable, e.g. Bin Laden captured by Sept 2009? (Y/N)
- Turn it into a financial instrument payoff = realized value of variable

I am entitled to:
$\$ 1$ if

Bin Laden caught
$\$ 0$ if
Bin Laden not caught

YAHOO! Research

リn $\underbrace{T M}$
 The Prediction Market

http://intrade.com

Contract		Bid Ask		Last	Vol	Chge
(1) OSAMA.CAPTURE.MAR09 Osama Bin Laden to be captured/neutralised by 31 Mar 2009	Trade ame	4.0	5.3	5.0	1961	0
OSAMA.CAPTURE.JUN09 Osama Bin Laden to be captured/neutralised by 30 Jun 2009	Trade NuN	5.8	8.0	7.2	841	0
OSAMA.CAPTURE.SEP09 Osama Bin Laden to be captured/neutralised by 30 Sep 2009	Trade Now	11.0	12.0	11.0	10	0

Jan 08 - 2:14PM GMT

YAHOO! Research

Prediction Markets
 With Money
 Without

$?$ Contract	B Qty	Bid	Ask	A Oty	Last	Vol	Chge
Trade UNV US.RECESSION. 08	1	72.2	73.9	2	74.0	34.9k	+3.0
Trade MNT BIRDFLU.USA.JUN08	100	6.0	14.0	5	10.0	1323	0
Trade MuN BIRDFLU.USA.SEP08	10	6.5	16.0	5	11.2	430	0

3 Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge
Trade TaN OSAMA.CAPTURE.MAR08	5	1.9	3.3	1	2.6	4888	0
Trade $\mathrm{NaN}^{\text {OSAMA.CAPTURE.JUN08 }}$	4	5.1	5.7	25	5.5	2019	0
Trade $2 N$ OSAMA.CAPTURE.SEP08	5	8.3	8.8	4	9.1	822	0

? Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge	
Trade	22	71.8	72.0	55	72.0	403.0 k	-1.3	
Trade \quad 2008DEM.NOM.OBAMA	2008DEM.NOM.CLINTON	50	28.5	28.9	4	28.9	549.1 k	+1.1

$?$ Contract	B Qty	Bid	Ask	A Qty	Last	Vol	Chge
Trade ruN ALABAMA.DEM	0		10.0	20	10.0	56	0
Trade ${ }^{\text {NN }}$ ALABAMA.REP	20	90.0	95.0	5	90.0	22	0
Trade MaN ALABAMA.FIELD	5	0.1	5.0	20	0.1	0	0
Trade NaN ALASKA.DEM	20	5.0	10.0	17	7.5	23	0
Trade \sim NLASKA.REP	20	85.0	95.0	20	92.5	45	0
Trade MN ALASKA.FIELD	5	0.1	5.0	20	0.1	0	0

Androids Beat Humans in Soccer (BOTS) Will a team of androids beat the human World Cup champs at a game of soccer by 2050?

Fuel-Cell-Powered Laptop (FCELL)

Will the first fuel-cell-powered laptop go on sale in the U.S. by the end of 2008 ?

Price: POP\$ 43.75
Status: ACT

Barack Obama will be the Democratic Presidential Nominee in 2008

newsfutures

Continuous Double Auction

Uber-Hammer of the Financial World

- Buy offers

ACME stock

- Sell offers

$\$ 150$
$\$ 120$
$\$ 90$
$\$ 50$

T) Continuous Double Auction

Uber-Hammer of the Financial World

- Buy offers

ACME stock

T) Continuous Double Auction

Uber-Hammer of the Financial World

- Buy offers

ACME stock
price $=\$ 150$

- Sell offers

\$140 $\sqrt{ }$ Winning traders

Continuous Double Auction

Uber-Hammer of the Financial World

- Buy offers

ACME stock

- Sell offers
\square

$\$ 120$
$\$ 90$
$\$ 50$

Continuous Double Auction

Uber-Hammer of the Financial World

- Used everywhere
- Stocks, options, futures, derivatives
- Gambling: BetFair, InTrade
- Related bets? Just use two CDAs
- Max[YHOO-10], Max[YHOO-20]
- Horse wins, Horse finishes 1st or 2nd
- "Power set" instruments: Mutual funds, ETFs, butterfly spreads, "Western Conference wins"
- Treats everything like apples and oranges, even hamburgers and cheeseburgers

Continuous Double Auction

Uber-Hammer of the Financial World

- CDA was invented when auctioneers were people
- Had to be dead simple
- Today, auctioneers are computers...
- ...Yet CDA remains the standard

(T)
 Like Ordering a Wendy’s Hamburger

- Informal definition: A combinatorial market is one where users construct their own bets by mixing and matching options in myriad ways
- Wendy's bags circa March 2008: "We figured out that there are 256 ways to personalize a Wendy's hamburger. Luckily someone was paying attention in math class."

Example I: WeatherBill

Select a Contract
Pick the contract that best sults your needs
Description

Choose Dates of Coverage

Select Location (0lease read disclaimer)


```
USA ;
postaVzip code
\squarefind woather stavon
NJ-Alantic CIy Imf/AP %) (7)
```

Choose Payment Terms

In an average year, you can exped Rainy Days to be between 0.0 days and 0.9 days during this contract period. You may want to increase you Rainy Days to reduce your price and protect against more extreme rish.

Historical Payouts What his contract would have paid out in previous years

Year	Payout	Year	Payout
2007	$s 0$	1992	$s 0$
2006	$s 0$	1991	$s 0$
2005	$\$ 100$	1990	$s 0$
2004	$s 0$	1989	$s 0$
2003	$s 100$	1988	$\$ 0$
2002	$s 0$	1987	$\$ 100$
2001	$\$ 100$	1986	$\$ 100$
2000	$\$ 100$	1985	$\$ 0$

Example II: March Madness

YAHOO! Research

Example II: March Madness

- Typical today Non-combinatorial
- Team wins Rnd 1
- Team wins Tourney
- A few other "props"
- Everything explicit (By def, small \#)
- Every bet indep: Ignores logical \& probabilistic relationships
- Combinatorial
- Any property
- Team wins Rnd k Duke > \{UNC,NCST\} ACC wins 5 games
- $2^{2^{63}}$ possible props (implicitly defined)
- 1 Bet effects related bets "correctly";
e.g., to enforce logical constraints

Advantages

- More choices -- better hedges
- More information
- Better processing of information: Let traders focus on predicting whatever they want, however they want: Mechanism takes care of logical/probabilistic inference
- Smarter budgeting

Combinatorial Bids vs. Combinatorial Outcomes

- Combinatorial bids
- Bundling: "Western conference will win", "Gas prices between 1.75-2.50"
- If bids are divisible, almost no disadvantage: use linear programming
- Combinatorial outcomes
- Outcome space exponential: March Madness, horse racing
- Needs combinatorial bids too
- Usually intractable but don't give up hope

YAHOO! Research

Auctioneer vs. Market Maker

- An auctioneer only matches buyers \& sellers: never takes on any risk. CDA is an example.
- An automated market maker is always willing to accept both buy and sell orders at some prices
- Why an institutional market maker? Liquidity!
- Without market makers, the more expressive the betting mechanism is the less liquid the market is (few exact matches)
- Illiquidity discourages trading: Chicken and egg
- Subsidizes information gathering and aggregation: Circumvents notrade theorems
- Market makers bear risk. But smart pricing algorithms can bound the loss of market makers
- Market scoring rules [Hanson 2002, 2003, 2006]
- Family of bounded-loss market makers [Chen \& Pennock 2007]
- Dynamic pari-mutuel market [Pennock 2004]

(1)!
 Combinatorics 1 of 3: Boolean Logic

- Outcomes: All 2^{n} possible combinations of n Boolean events
- Betting language

Buy q units of "\$1 if Boolean Formula" at price p

- General: Any Boolean formula ($2^{2^{n}}$ possible)
- A \& not(B) •(A\&C||F)|(D\&E)
- Oil rises \& Hillary wins | Guiliani GOP nom \& housing falls
- Eastern teams win more games than Western in Tourney
- Restricted languages we study
- Restricted tournament language Team A wins in round i; Team A beats B, given they meet
- 2-clauses: A \& not(C)

Combinatorics 2 of 3: Permutations

- Outcomes: All possible n! rank orderings of n objects (horse race)
- Betting language

Buy q units of " $\$ 1$ if Property" at price p

- General: Any property of ordering
- A wins
- A finishes in pos 3,4, or 10th
- A beats D
- 2 of $\{B, D, F\}$ beat A
- Restricted languages we study
- Subset betting

A finishes in pos 3-5 or 9; A,D,or F finish 3rd

- Pair betting A beats F

Combinatorics 3 of 3: Taxonomy

- Outcomes: Cross product of n discretized numbers
- Betting language

Buy q units of " $\$ 1$ if Function" at price p

- General: Any mathematical function of the numbers
- Restricted language we study
- Taxonomy betting Numbers are arranged in a hierarchy Parent nodes = sum of children Can bet on the range of any node in the hierarchy

YAHOO! Research

Predicting Permutations

- Predict the ordering of a set of statistics
- Horse race finishing times
- Number of votes for several candidates
- Daily stock price changes
- NFL Football quarterback passing yards
- Any ordinal prediction
- Chen, Fortnow, Nikolova, Pennock, EC'07

YAHOO! Research

Market Combinatorics

Permutations

- $A>B>C$
.1
- $\mathrm{B}>\mathrm{C}>\mathrm{A}$
. 3
- $A>C>B$
. 2
- $C>A>B$
.1
- $B>A>C$
.1
- $C>B>A$
. 2

YAHOO! Research

Market Combinatorics

Permutations

D $>$ A $>$ B $>$ C	. 01	D $>\mathrm{B}>\mathrm{C}>\mathrm{A}$. 05
$D>A>C>B$. 02	- D $>$ C $>\mathrm{A}>\mathrm{B}$. 1
$D>B>A>C$. 01	- D $>\mathrm{C}>\mathrm{B}>\mathrm{A}$. 2
- $\mathrm{A}>\mathrm{D}>\mathrm{B}>\mathrm{C}$. 01	- $\mathrm{B}>\mathrm{D}>\mathrm{C}>\mathrm{A}$. 03
- $\mathrm{A}>\mathrm{D}>\mathrm{C}>\mathrm{B}$. 02	- $\mathrm{C}>\mathrm{D}>\mathrm{A}>\mathrm{B}$. 1
- $\mathrm{B}>\mathrm{D}>\mathrm{A}>\mathrm{C}$. 05	- C $>$ D $>\mathrm{B}>\mathrm{A}$. 02
- $\mathrm{A}>\mathrm{B}>\mathrm{D}>\mathrm{C}$. 01	- $\mathrm{B}>\mathrm{C}>\mathrm{D}>\mathrm{A}$. 03
- $\mathrm{A}>\mathrm{C}>\mathrm{D}>\mathrm{B}$. 2	- C $>$ A $>$ D $>$ B	. 0
- $\mathrm{B}>\mathrm{A}>\mathrm{D}>\mathrm{C}$. 01	- C > B $>$ D $>$ A	. 02
- $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$		$\mathrm{B}_{2} \mathrm{C}_{2} \mathrm{D}>\mathrm{A}$. 0
- $\mathrm{A}>\mathrm{C}>\mathrm{B}>\mathrm{D}$. 0
- $\mathrm{B}>\mathrm{A}>\mathrm{C}>\mathrm{D}$. 0

YAHOO! Research

Bidding Languages

- Traders want to bet on properties of orderings, not explicitly on orderings: more natural, more feasible
- A will win ; A will "show"
- A will finish in [4-7] ; \{A,C,E\} will finish in top 10
- A will beat B; $\{A, D\}$ will both beat $\{B, C\}$
- Buy 6 units of " $\$ 1$ if $A>B$ " at price $\$ 0.4$
- Supported to a limited extent at racetrack today, but each in different betting pools
- Want centralized auctioneer to improve liquidity \& information aggregation

YAHOO! Research

Auctioneer Problem

- Auctioneer's goal: Accept orders with non-negative worst-case loss (auctioneer never loses money)
- The Matching Problem
- Formulated as LP
- Generalization: Market Maker Problem: Accept orders with bounded worst-case loss (auctioneer never loses more than b dollars)

YAHOO! Research

Example

- A three-way match
- Buy 1 of " $\$ 1$ if $A>B$ " for 0.7
- Buy 1 of " $\$ 1$ if $B>C$ " for 0.7
- Buy 1 of " $\$ 1$ if $\mathbf{C > A}$ " for 0.7

YAHOO! Research

Pair Betting

- All bets are of the form "A will beat B"
- Cycle with sum of prices >k-1 ==> Match (Find best cycle: Polytime)
- Match =/=> Cycle with sum of prices > k-1
- Theorem: The Matching Problem for Pair Betting is NP-hard (reduce from min feedback arc set)

YAHOO! Research

Subset Betting

- All bets are of the form
- "A will finish in positions 3-7", or
- "A will finish in positions $\mathbf{1 , 3}$, or 10 ", or
- "A, D, or F will finish in position 2"
- Theorem: The Matching Problem for Subset Betting is polytime (LP + maximum matching separation oracle)

YAHOO! Research

Market Combinatorics

Boolean

I am entitled to: $\$ 1$ if $A 1 \& A 2 \& \ldots \& A n$
I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \mathrm{~A} 2 \& \ldots \& \overline{\mathrm{An}}$

I am entitled to: $\$ 1$ if $\overline{\mathrm{A} 1} \& \mathrm{~A} 2 \& \ldots \& \mathrm{An}$

```
I am entitled to: $1 if }\overline{\textrm{A}1&A2&\ldots&\overline{An}
```

I am entitled to: $\$ 1$ if $\mathrm{A} 1 \& \overline{\mathrm{~A}} 2 \& \ldots \& \mathrm{An}$

```
I am entitled to: $1 if A1&\overline{A2& &&A}
```

I am entitled to: $\$ 1$ if $\overline{\mathrm{A} 1} \& \overline{\mathrm{~A} 2} \& \ldots \& \mathrm{An}$
I am entitled to: \$1 if $\overline{\mathrm{A} 1} \& \overline{\mathrm{~A} 2} \& \ldots \& \overline{\mathrm{An}}$

- Betting on complete conjunctions is both unnatural and infeasible

YAHOO! Research

Market Combinatorics

Boolean

- A bidding language: write your own security

> I am entitled to: \$1 if Boolean_fn | Boolean_fn

- For example

I am entitled to:	\$1 if A1 \| A2	I am entitled to: \$1 if
I am entitled to:	\$1 if (A1\&	

- Offer to buy/sell qunits of it at price p
- Let everyone else do the same
- Auctioneer must decide who trades with whom at what price... How? (next)
- More concise/expressive; more natural

YAHOO! Research

The Matching Problem

- There are many possible matching rules for the auctioneer
- A natural one: maximize trade subject to no-risk constraint
- Example:
- buy 1 of
- sell 1 of
- sell 1 of

$\$ 1$ if $A 1$	for $\$ 0.40$
$\$ 1$ if $A 1 \& A 2$	for $\mathbf{\$ 0 . 1 0}$
$\$ 1$ if $A 1 \& A 2$	for $\mathbf{\$ 0 . 2 0}$

- No matter what happens, auctioneer cannot lose money
trader gets $\$ \$$ in state:
A1A2 A1 $\overline{\mathrm{A} 2} \overline{\mathrm{~A} 1} \mathrm{~A} 2 \overline{\mathrm{~A} 1 \mathrm{~A} 2}$

0.60	0.60	-0.40	-0.40
-0.90	0.10	0.10	0.10
0.20	-0.80	0.20	0.20
-0.10	-0.10	-0.10	-0.10

YAHOO! Research

Fortnow; Kilian; Pennock; Wellman

Complexity Results

- Divisible orders: will accept any $q^{*} \leq q$
- Indivisible: will accept all or nothing

- Natural algorithms
- divisible: linear programming
- indivisible: integer programming;
logical reduction?

YAHOO! Research

Automated Market Makers

- n disjoint and exhaustive outcomes
- Market maker maintain vector Q of outstanding shares
- Market maker maintains a cost function $C(Q)$ recording total amount spent by traders
- To buy ΔQ shares trader pays $C(Q+\Delta Q)-C(Q)$ to the market maker; Negative "payment" = receive money
- Instantaneous price functions are

$$
p_{i}(Q)=\frac{\partial C(Q)}{\partial q_{i}}
$$

- At the beginning of the market, the market maker sets the initial Q^{0}, hence subsidizes the market with $C\left(Q^{0}\right)$.
- At the end of the market, $C\left(Q^{f}\right)$ is the total money collected in the market. It is the maximum amount that the MM will pay out.

YAHOO! Research

New Results:

Pricing LMSR market maker

- Subset betting on permutations is \#P-hard (call market polytime!)
- Pair betting on permutations is \#P-hard
- 2-clause Boolean betting \#P-hard
- Restricted tourney betting is polytime (uses Bayesian network representation)
- Approximation techniques for general case
- Published in EC'08 and STOC'08

B!
 Overview: Complexity Results

| | Permutations | | | Boolean | | Taxonomy | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | General | Pair | Subset | General | 2-clause | Restrict
 Tourney | General | Tree |

More Info

What is (and what good is) a combinatorial prediction market?
http://blog.oddhead.com/
2008/12/22/what-is-and-what-good-is-a-combinatorial-prediction-market/

YA HOO! BRACKETOLOGY

- March Madness bet constructor
- Bet on any team to win any game
- Duke wins in Final 4
- Bet "exotics":
- Duke advances further than UNC
- ACC teams win at least 5
- A 1-seed will lose in 1st round

YAHOO! Research

New Prediction Game: Yoopick

My Bet: $y \$ 10$
To win y $\$ 18$

CFTC Role

- MayDay 2008: CFTC asks for help
- Q: What to do with prediction markets?
- Right now, the biggest prediction markets are overseas, academic (1), or just for fun
- CFTC may clarify, drive innovation
- Or not

YAHOO! Research

Advertising Then and Now

- Then: Think real estate Phone calls Manual negotiation "Half doesn't work"

校 javabook - Netscape $\quad-\mathrm{l}$ 可 x					
island home sytem stats help					
0 MSFT		$\begin{gathered} \text { GET } \\ \text { MSFT } \end{gathered}$	$\begin{aligned} & \text { stack } \\ & \text { go } \end{aligned}$		
Time 17:01:34 Volume 2,480,090					
100	105	100	$1067 / 8$		
200	104 1/2	250	$1081 / 16$		
300	$1041 / 2$	37	$1081 / 4$		
96	$1043 / 8$	1,335	$1081 / 4$		
50	$1041 / 32$	32	$1081 / 4$		
50	104	500	$1081 / 4$		
50	104	100	$1081 / 4$		
100	104	32	$1083 / 8$		
100	104	500	$1087 / 16$		
250	$1031 / 2$	805	$1083 / 4$		
7	$1031 / 2$	500	109		

- Now: Think Wall Street Computer learns what ad is best Computer mediates ad sales: Auction Computer measures which ads work Advertisers buy contextual events: User i views/clicks/converts on page j at time t

YAFㅣㅇ․ Research

Dynamic Parimutuel Market: An Automated Market Maker

YАНОО! Research

What is a pari-mutuel market?

- E.g. horse racetrack style wagering
- Two outcomes:
- Wagers:

YАНОО! Research

What is a pari-mutuelmarket?

- E.g. horse racetrack style wagering
- Two outcomes:
\checkmark_{A}

YАНОО! Research

What is a pari-mutuelmarket?

- E.g. horse racetrack style wagering
- Two outcomes:
$\sqrt{ }$ A
B
- Wagers:

YAHOO! Research

What is a pari-mutuel market?

- Before outcome is revealed, "odds" are reported, or the amount you would win per dollar if the betting ended now
- Horse A: \$1.2 for \$1; Horse B: \$25 for \$1; ... etc.
- Strong incentive to wait
- payoff determined by final odds; every \$ is same
- Should wait for best info on outcome, odds
- \Rightarrow No continuous information aggregation
- \Rightarrow No notion of "buy low, sell high" ; no cash-out

YАНОО! Research

Pari-Mutuel Market

Basic idea

YАНОО! Research

Dynamic Parimutuel Market

YАНOO! Research

Share-ratio price function

- One can view DPM as a market maker
- Cost Function:

$$
C(Q)=\sqrt{\sum_{i=1}^{n} q_{i}^{2}}
$$

- Price Function:
- Properties

$$
p_{i}(Q)=\frac{q_{i}}{\sqrt{\sum_{j=1}^{n} q_{j}^{2}}}
$$

- No arbitrage
- price $/{ }_{i}$ price ${ }_{j}=q_{i} / q_{j}$
- price ${ }_{i}$ < \$1
- payoff if right $=\mathbf{C}\left(\mathrm{Q}_{\text {final }}\right) / \mathrm{q}_{\text {o }}>\$ 1$

YAHOO! Research

Mech Design for Prediction

	Financial Markets	Prediction Markets
Primary	Social welfare (trade) Hedging risk	Information aggregation
Secondary	Information aggregation	Social welfare (trade) Hedging risk

YAHOO! Research

Mech Design for Prediction

- Standard Properties
- Cffieiency
- Inidiv. rationality
- Budget balanee-
- Revenue-
- Truthful (IC)
- Comp. complexity
- Equilibrium
- General, Nash, ...
- PM Properties
- \#1: Info aggregation
- Expressiveness
- Liquidity
- Bounded budget
- Truthful (IC)
- Indiv. rationality
- Comp. complexity
- Equilibrium
- Rational expectations

Competes with: experts, scoring rules, opinion pools, ML/stats, polls, Delphi

